
https://root.cern

ROOT
Data Analysis Framework

RNTuple Schema Evolution: 
Status and Discussion

 

2024-12-03

https://root.cern


Introduction

2

● Schema evolution: Read an on-disk field into a different in-memory type
○ Usually in the context of user-defined classes that change over time
○ But also applicable to native top-level fields (e.g., std::vector<float> → RVec<float>)

● Schema evolution governed by rules
○ Implicit (automatic) rules and 
○ I/O customization rules / (manual) read rules

■ Overwrite implicit rules
■ Extend the capabilities of automatic rules

● Plan: RNTuple will implement the well-established ROOT I/O schema evolution mechanisms, with caveats (see later)
○ At the same time, this is an opportunity to improve the ROOT schema evolution in general

■ Documentation and ability to reason about the system
(i.e.: make it clearer what users can and cannot rely on)

■ Fixing / better define behavior in edge cases
■ Passing custom information to the read rule

● Introduction question: to what extent do we expect classes of a given version to be subject to both TTree and 
RNTuple schema evolution?

○ E.g.: Event v2-v10 TTree only, v10-v11 TTree and RNTuple (?), v12+ RNTuple only
○ (Note that types may also be stored as bare objects in the file, outside TTree and RNTuple)



Examples

Automatic Evolution

3

Manual Evolution

see later on the ``how''



Automatic Rules

4

Recursive evolution, e.g. 
vector<int32_t> → 
RVec<int64_t>

Class Layout Change RNTuple Support Comment

Class
members

Reorder members, remove member Available

Add new member Draft PR

Base classes
(not intermediate)

Reorder base classes, remove base class Available

Read derived in-memory class from base on-disk class → Manual rules

Add new base class Draft PR

Types with identical
on-disk representation

std::pair ←→ std::tuple Available

std::unique_ptr ←→ std::optional Available

std::vector ←→ ROOT::RVec ←→ collection proxy ←→ std::*set Available

Between std::[unordered_][multi]map (unique constraint check tbd) Available

Between std::[unordered_][multi]map and
sequential collection of std::pair

Available

PoD transformations
(column-level transformation)

Between bool and integral types (except std::byte) Available

Between integral types with bounds checking (except std::byte) Available

Between floating point types (safety check for FP class still tbd) Available

Field-level
transformations

enum ←→ integral type Tbd (simple)

std::atomic<T> ←→ T Tbd (simple)

std::unique_ptr<T>, std::optional<T> ←→T Tbd (intricate) uni-directional only?

fixed-sized array ←→sequential collection Tbd (intricate) currently available for RVec only

Class hierarchy changes
Move members between base and derived class → Manual rules Prefer to move to manual schema 

evolution, if feasibleInsert or drop intermediate classes → Manual rules



Manual Rules

● Recap
○ I/O customization rules are part of the dictionary, not persistified in the ROOT file 

(in principle, code exists to do so but no clear case for it could be made)
○ Code snippets embedded in generated code

5

Linkdef.h

Access to newObj, onfile struct and target member references (not shown)

(additional rules for fProperties and fTemperature)



Manual Rules: Dictionary

6

internal use

write-only access

W
e 

co
ul

d 
hi

de
 t

he
 in

te
rn

al
 v

ar
ia

bl
es

reference to target, can set e.g. private member



Examples

7

1. Value update: temperature K → C
2. Coordinate transformation euclidean to polar (multi-source, multi-target)
3. Non-trivial type change, e.g. string to integer

4. Update to/from a member within an object member (like fTrack.fInfoLinkedToParent)
5. Move member in the class hierarchy, e.g. to/from base class, to/from member
6. Add/remove intermediate classes
7. Class rename
8. Data member rename

● Some examples may be difficult to accomplish today
● From the experiment point of view, what are (were) the difficult cases?
● Which important cases are we missing?



Discussion

● RNTuple currently supports rules targeting transient members if the in-memory and the on-disk class layout 
are identical

○ First full support for manual schema evolution requires the source member to be read into a staging 
area and passed to the rule (should not be difficult)

○ Plus the ability to deal with artificial (computed) fields (PR)
● We need to provide a way to schema-evolve streamer fields into native fields
● Not considered so far: class rename and member rename

● Manual rules work well for numerical members
○ Caveats related to changes to the class hierarchy shape
○ E.g., how should the user code ideally access on-disk information of complex, expired types

● Related feature requests
○ "After reading" rules
○ Automatically re-initialize transient members (optional behavior)
○ Pass a user-pointer down to the rule

8


