RNTuple Attributes proposal

Giacomo Parolini
ROOT Team, CERN

What are attributes

> “Attributes” are arbitrary metadata that are linked to a range of entries
in a RNTuple
» They have a user-defined schema specified through a RNTupleModel,
This works just like regular entries with a few restrictions:
e No late model extension
e No projected fields
e No streamer fields
e No untyped collections / records
e No write options
» A“global” attribute is just an attribute associated to the entire range of
entries

What are attributes

Each Set associates zero or more attribute

event_id | ptx entries to an entry range in the RNTuple
R
0
AttrSet 1
1 - AttrSet 2
2
/
event_range attr_foo event_range attr_bar attr_baz
[0-1] e <L >4
overlap! [2_1 0]

How to use - Writing

// Step 1: create model for the attribute set
auto attrModel = RNTupleModel::Create();
attrModel->MakeField<std: :string>("1lumiBlock");
attrModel->MakeField<int>("runNumber");

// Step 2: create the attribute set from the writer
auto attrSet = writer->CreateAttributeSet("MyAttrSet", std::move(attrModel));

// Step 3: open attribute range. attrRange has basically the same interface as REntry pd()tf?' t/?f?

auto attrRange = attrSet->BeginRange(); .
Attributes API

// Step 4: assign attribute values.

// Values can be assigned anywhere between BeginRange() and EndRange(). doesn’t eXiSt_yet,
auto pLumi = attrRange->GetPtr<std::string>("lumiBlock"); ..
*pLuni = GetLumiBlock(); this is just a
for (int i = @0; i < 100; ++i) {

auto entry = model->CreateEntry(); ﬂ)r()KDCIS(J/

// ... fill entry data ...

writer->Fill(*entry);
}

auto pRunNumber = attrRange->GetPtr<int>("runNumber");
*pRunNumber = GetRunNumber();

// Step 5: close attribute range
attrSet->EndRange(std: :move(attrRange));

How to use - Reading

// Step 1: retrieve your attribute set from the reader
const auto &attrSet = reader->GetAttributeSet("MyAttrSet");

// Step 2: access the attributes by entry range
for (auto i : reader->GetEntryRanges()) {
// Access all attribute entries associated to this entry range.
// Note that a range can have multiple “rows” of attributes associated.
for (const auto &attrEntry : attrSet->GetAttributes(i)) {
// uuid might for example be used to track the (full) provenance of this event
auto pUuid = attrEntry->GetPtr<std::string>("uuid"); NOl'e' the

std::cout << "Entry " << i << " has uuid " << *pUuid << "\n"; Attrlbutes AP/
doesn'’t exist yet,

// Possible alternative syntax: ..
for (const auto &uuid: attrSet->GetAttributes<std::string>("uuid", i)) thls IS_IUSt a
std::cout << "Entry " << i << " is associated to uuid " << uuid << "\n"; proposa/

// Step 2': or, iterate directly over the attribute ranges
for (const auto &attr : attrSet->GetAttributeRanges()) {
auto range = attr->GetRange();
auto lumi = *attr->GetPtr<std::string>("lumiBlock");
std::cout << "range " << Format(range) << " has lumi block " << lumi << "\n";

Attribute Sets

Attributes are organized in “Attribute Sets”

Each Attribute Set has its own name and schema (1 RNTupleModel
per Set)

You can Begin and End attribute ranges from any Set
There is a reserved implicitly-created “ROOT"” Set (opt-out?)

Implementation details

> Attribute Sets are stored internally as RNTuples

» Linked to by the “main” RNTuple (probably in the footer)

Merging

Since attributes are always linked to entry ranges, merging two
RNTuples each with its own Attribute Sets is trivial: just concatenate
the ranges for each Set

This preserves the provenance of each attribute range

A new range encompassing all merged ranges can be created as
well, leading to a “matrioska” of attribute ranges

We may want to provide a “squash” operation to handle attributes
growing too much (but can be an external tool)

Open questions

» Do we want/need to support empty attribute ranges?
e Upside: allow to still support “global” attributes for empty RNTuples

e Downside: semantics are controversial, especially when merging

» Do we want/need to support creating overlapping attribute
ranges (other than from merging) from the same attribute set?

e |.e.do we allow arbitrarily interleaving Begin and EndRange?

> Is the Begin/EndRange API sufficient or do we want a more flexible
API? (decouple metadata and data writing)

