
RNTuple Attributes proposal

Giacomo Parolini
ROOT Team, CERN

What are attributes

▶ “Attributes” are arbitrary metadata that are linked to a range of entries
in a RNTuple

▶ They have a user-defined schema specified through a RNTupleModel,
This works just like regular entries with a few restrictions:

● No late model extension
● No projected fields
● No streamer fields
● No untyped collections / records
● No write options

▶ A “global” attribute is just an attribute associated to the entire range of
entries

2

What are attributes

3

event_id pt.x …

0 … …

1 … …

2 … …

AttrSet 1
AttrSet 2

event_range attr_foo

[0-1] …

event_range attr_bar attr_baz

[0-2] … …

[2-10] … …

Attributes
can

overlap!

Each Set associates zero or more attribute
entries to an entry range in the RNTuple

How to use - Writing
// Step 1: create model for the attribute set
auto attrModel = RNTupleModel::Create();
attrModel->MakeField<std::string>("lumiBlock");
attrModel->MakeField<int>("runNumber");

// Step 2: create the attribute set from the writer
auto attrSet = writer->CreateAttributeSet("MyAttrSet", std::move(attrModel));

// Step 3: open attribute range. attrRange has basically the same interface as REntry
auto attrRange = attrSet->BeginRange();

// Step 4: assign attribute values.
// Values can be assigned anywhere between BeginRange() and EndRange().
auto pLumi = attrRange->GetPtr<std::string>("lumiBlock");
*pLumi = GetLumiBlock();
for (int i = 0; i < 100; ++i) {
 auto entry = model->CreateEntry();
 // ... fill entry data ...
 writer->Fill(*entry);
}
auto pRunNumber = attrRange->GetPtr<int>("runNumber");
*pRunNumber = GetRunNumber();

// Step 5: close attribute range
attrSet->EndRange(std::move(attrRange));

4

Note: the
Attributes API

doesn’t exist yet,
this is just a

proposal

How to use - Reading
// Step 1: retrieve your attribute set from the reader

const auto &attrSet = reader->GetAttributeSet("MyAttrSet");

// Step 2: access the attributes by entry range

for (auto i : reader->GetEntryRanges()) {

 // Access all attribute entries associated to this entry range.

 // Note that a range can have multiple “rows” of attributes associated.

 for (const auto &attrEntry : attrSet->GetAttributes(i)) {

 // uuid might for example be used to track the (full) provenance of this event

 auto pUuid = attrEntry->GetPtr<std::string>("uuid");

 std::cout << "Entry " << i << " has uuid " << *pUuid << "\n";

 }

 // Possible alternative syntax:

 for (const auto &uuid: attrSet->GetAttributes<std::string>("uuid", i))

 std::cout << "Entry " << i << " is associated to uuid " << uuid << "\n";

}

// Step 2': or, iterate directly over the attribute ranges

for (const auto &attr : attrSet->GetAttributeRanges()) {

 auto range = attr->GetRange();

 auto lumi = *attr->GetPtr<std::string>("lumiBlock");

 std::cout << "range " << Format(range) << " has lumi block " << lumi << "\n";

}

5

Note: the
Attributes API

doesn’t exist yet,
this is just a

proposal

▶ Attributes are organized in “Attribute Sets”

▶ Each Attribute Set has its own name and schema (1 RNTupleModel
per Set)

▶ You can Begin and End attribute ranges from any Set

▶ There is a reserved implicitly-created “ROOT” Set (opt-out?)

Attribute Sets

6

Implementation details

▶ Attribute Sets are stored internally as RNTuples

▶ Linked to by the “main” RNTuple (probably in the footer)

7

Merging

▶ Since attributes are always linked to entry ranges, merging two
RNTuples each with its own Attribute Sets is trivial: just concatenate
the ranges for each Set

▶ This preserves the provenance of each attribute range

▶ A new range encompassing all merged ranges can be created as
well, leading to a “matrioska” of attribute ranges

▶ We may want to provide a “squash” operation to handle attributes
growing too much (but can be an external tool)

8

Open questions

▶ Do we want/need to support empty attribute ranges?
● Upside: allow to still support “global” attributes for empty RNTuples

● Downside: semantics are controversial, especially when merging

▶ Do we want/need to support creating overlapping attribute
ranges (other than from merging) from the same attribute set?
● I.e. do we allow arbitrarily interleaving Begin and EndRange?

▶ Is the Begin/EndRange API sufficient or do we want a more flexible
API? (decouple metadata and data writing)

9

