Towards real-time profiling of medical accelerator beams with gas jet system

MILAAN PATEL University of Liverpool

11th BGC Collaboration Meeting 2nd-3rd, Dec 2024

Medical applications

Future accelerators: LhARA^[1] project (Laser Hybrid accelerator for radiobiological app.)

- Accelerator: Laser driven 10 Hz, ~10ns bunch of ~ $10^9 \text{ p}^+ / \text{C}^{6+}$.
- **Requirement:** beam profile monitor for in-vivo and in-vitro end-station.
- **Parameters to be monitored:** profile, current, energy and dose (if possible)

- S2C2, Mevion S250).
- ۲

Operational accelerators: Jet Dose project

Accelerator: Cyclotron (IBA c230, Varian PROBEAM), Synchrocyclotron (IBA

Proton beam Therapy: 2 Gy (min) to 1 Liter ; 1.9 x 10¹¹ p⁺ ; delivered in 1 minute (conventional dose rate) and 100 ms (FLASH dose rate)^[2]

Targets: beam profile monitoring during treatment.

Air gap at beamline-gantry coupling (20-30cm)

Typical beam transport system^[3]

[1] Baseline for the LhARA design update. Technical Report CCAP-TN-11 Issue 1, The LhARA Collaboration (2022) [2] S. Jolly, et al., "Technical challenges for FLASH proton therapy" Physics Medica 78(2020) 71-82 [3] J. M. Schippers, et al., "Beam Transport Systems for Particle Therapy." arXiv: Medical Physics (2017)

2-3 Dec. 2024

Supersonic gas curtain based lonization profile monitor

Proton beam profile measurements at Dalton Cumbria Facility, Whitehaven, UK and Uni. of Birmingham, UK

BGC meeting: Milaan

What camera sees

2-3 Dec, 2024

3

UNIVERSITY OF

LIVERPOOL

Detection times

DCF: 4MeV, 100nA, 1s, FWHM 1.5mm

700 I

UOB: 28MeV, 12nA, 500ms, FWHM-2mm

2-3 Dec, 2024

Detector response with beam current and energy

$$D(beam fluence /no.) = \frac{1}{a} \left(\frac{l}{qe} \times t \right) = \frac{1}{\beta a}$$

 $C(no.) = \beta\left(\frac{1}{qe} \times t\right)$

- where, D: Sensitivity (Fluence/count)
 - C : total integrated counts
 - q : charge of the beam
 - *I* : instantaneous beam current
 - *t* : integration time of the camera
 - β : Scaling factor

$$\beta = G_c \times E_L \times QE \times G_{MCP} \times E_{OAR} \times E_{IPM} \times P_{ion}(E)$$

Detector specific factors

Ionization probability (function of energy)

D _{28 MeV} (fluence/count)	Argon	Nitrogen
DCF experiments	1.5 x 10 ¹⁰	1.75 x 10 ¹⁰
UoB experiments	3.8 x 10 ⁸	2 x 10 ⁸
Gain (noise normalized)	~40	~87.5

Sensitivity scales with energy

Const. E - Counts scales with current

D (fluence/count) at different beam energies for 100 nA

5

LIVERPOOL

UASAR

2-3 Dec, 2024

Ongoing and planned works

- Experiments with electron beam test stand to • estimate scaling laws for
 - Count vs current •
 - Fluence/count vs energy •
- Quantifying accuracy of profile by comparison • with redundant diagnostics to account for
 - Undesired focussing\defocussing effects. •
 - Distortions at beam edges. ۲
 - Contrast of the beam edge relative to the ٠ background.
- IPM: New design for compactness and ۲ robustness
 - Field uniformity at the edges ٠
 - **Engineering study:** ۲ DFM iterations, Structural analysis
 - Physics study: recoil energy and self-repulsion ullet

New IPM Design (75% of original)

BGC meeting: Milaan

2-3 Dec, 2024

LIVERPOOL

THANK YOU

Project Team:

- Carsten Welsch
- Narender Kumar
- Milaan Patel
- William Butcher (PhD student)
- Farhana Thesni (PhD student)

