

UNILAC Pulsed Hydrogen Gas Stripper

11th BGC Collaboration Meeting Liverpool University, 02.12.2024 P. Gerhard / PSU, GSI, Darmstadt on behalf of Pulsed Gas Stripper team

Contents

- Heavy ion stripping at UNILAC
- Pulsed hydrogen gas stripper: Why are we doing this?
- Link to Beam Gas Curtain (BGC) profile monitor
- Performance of our gas target and some experience
- Conclusions

UNIversal Linear ACcelerator

- UNILAC: Heavy ion accelerator
- High current ion sources deliver low charge states
- Increase of charge state highly desirable to facilitate acceleration
- Use gas stripper after injector linac at (RFQ + IH-DTL) 1.4 Mev/u

Increase Charge State: The Gas Stripper Section

- Stripping due to collisions of ions with target particles
- Increased charge state(s), distribution \Rightarrow loss of up to 85% of beam
- Figure of merit: Stripping efficiency into desired charge state
- Separation and selection of desired charge state, e.g. U²⁸⁺

FAIR ESS in

Increase Stripping Efficiency: Use Hydrogen

Measured charge state distributions with highest <q>

- All ions:
 - higher average charge state
 - less rf power
 - higher energy in SIS18
 - increased space charge effects
- Heavy ions (U, Bi):
 - more narrow distribution
 - increased stripping efficiency
 - higher beam intensity

H₂: need to reduce gas load!

Reduce Gas Load: Make Use of Low Duty Cycle! ⇒ Pulsed Gas Injection

P. Gerhard / Pulsed Hydrogen Gasstripper at 11th BGC Collaboration Meeting, Liverpool

UNILAC Pulsed Gas Stripper

FAIR GmbH | GSI GmbH

P. Gerhard / Pulsed Hydrogen Gasstripper at 11th BGC Collaboration Meeting, Liverpool

02.12.2024

Some Technical Details

- Valves: automotive magnetic injector valves
 - 1. Direct liquid injection valve, not compatible with gas operation, fast (< ms), directed spray, high pressure (250 bar)
 - 2. Intake-manifold gas injection valve, slower (~ms), low pressure (max. 12 bar)
 - no (intended) super-sonic expansion/jet, simple annular outlet, containment by "stripping cell" (pipe)
 - no theoretical investigations so far
 - cooling by medium
 - ~200€
- Controller: automotive test stand and development equipment
 - flexible programming, current profiles
 - ~15 k€

FAIR GmbH | GSI GmbH

Liquid and gaseous media valves

P. Gerhard / Pulsed Hydrogen Gasstripper at 11th BGC Collaboration Meeting, Liverpool

Link to BGC

- Injection of a 2-dim. gas curtain similar to our former gas jet
- Possible reduction of gas load by pulsed injection?
- Parameters: compatible
- Ne, N₂ at 2-5 bar
- p_{gas}≈10⁻⁶ mbar
- Operating duration minutes to hours

Principle of Fluorescence Gas Curtain Monitor

The 2-dim transverse profile Beam Gas Curtain Monitor features are:

Stripping target characterization

Beam current unstripped

Valve opening / stripping target build up and dissipation

Beam current stripped

Valve coil current

FAIR GmbH | GSI GmbH

P. Gerhard / Pulsed Hydrogen Gasstripper at 11th BGC Collaboration Meeting, Liverpool 02.12.2024

Conclusion

- Switch gas target on/off within ~100s of μs
- Gas target reasonably stable for ~ms
- p_{gas} ~10 mbar
- Operating parameters of BGC (type of gas, pressure) are generally compatible
- Service life of valves?
 From our experience 50-80.10⁶ cycles @50Hz operation, nominal 380.10⁶ cycles
- Maybe not what you are looking for ...

Our Gas Control Setup: More Standard Valves ...

low pressure regulators

FAIR GmbH | GSI GmbH

Thank you for your attention!

Gas Handling Schematics

P. Gerhard / Pulsed Hydrogen Gasstripper at 11th BGC Collaboration Meeting, Liverpool

Target Characterization

Target thickness derived from energy loss of U, Upgraded setup, increased thickness wrt. back pressure

FAIR GmbH | GSI GmbH

P. Gerhard / Pulsed Hydrogen Gasstripper at 11th BGC Collaboration Meeting, Liverpool

P. Scharrer et al., NIM A 863 (2017) 20-25

02.12.2024

Fast valve operation

Beam current stripped

Valve opening / stripping target build up

Beam current unstripped

Valve coil current

P. Gerhard / Pulsed Hydrogen Gasstripper at 11th BGC Collaboration Meeting, Liverpool

Stripping target stability

U 28+, H2 6bar

with buffer

Data: TEK00068-78

FAIR GmbH | GSI GmbH

Valve profile verification

90V, impulse 300µs

60V, impulse 400µs

Measurement Equipment

Timing monitoring

Valve monitoring Beam currents

Valve controller

Operation: Valve controller Gate pulse generator

Local timing generation

Flow meter

Flight case for electronics on its way to the ESR roof

FAIR GmbH | GSI GmbH