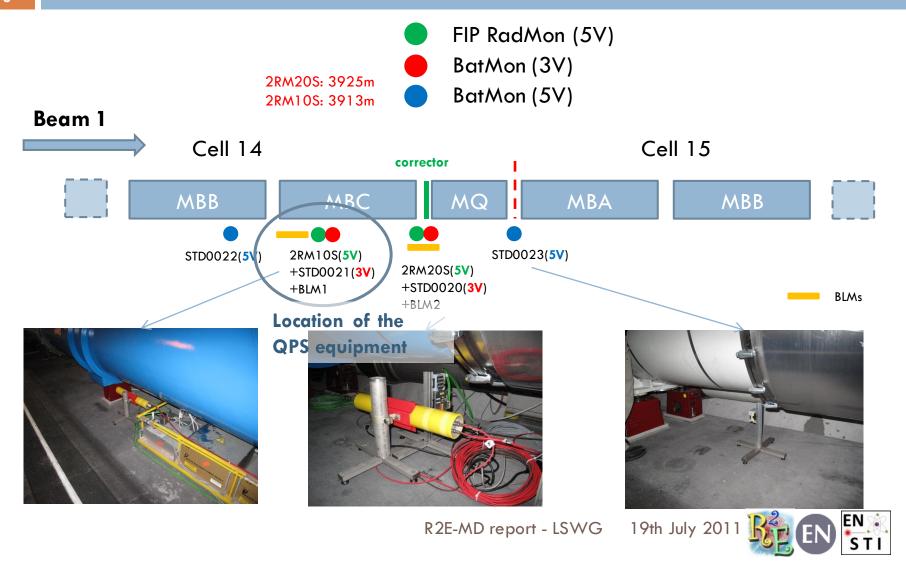


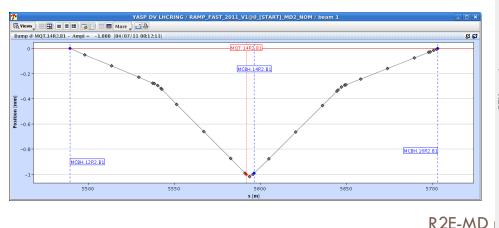
R2E-MD PRELIMINARY REPORT

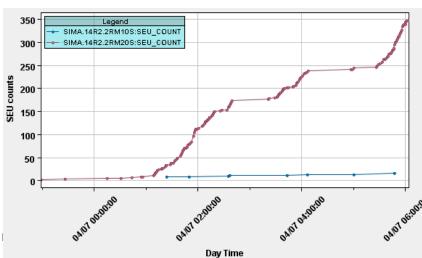
- 3RD/4TH JULY 2011 19TH JULY LSWG MEETING


M. Calviani, M. Brugger, G. Spiezia (EN/STI), M. Sapinski, A. Priebe, A. Nordt (BE/BI), M. Pojer (BE/OP)

Main motivations for the R2E-MD

- Evaluation of the R factor Φ_{th}/Φ_{HEH} in tunnel locations \rightarrow important parameter for the prediction of R2E-related radiation levels and check radiation level gradient
- RadMon/BLM ratio:
 - To be used in the LHC:
 - Also interested in the gradient between BLM location and below dipole equipments, expecting 3x if at the same longitudinal location
- Wanted also to verify (get a better idea) of the ISO150 failure cross-section (QPS equipment)




Detector configurations for the test

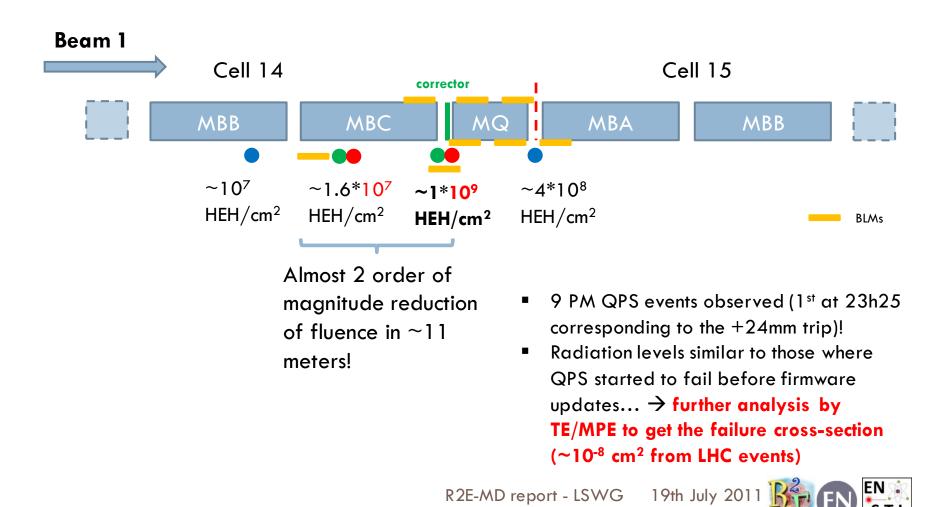
Main settings during the test (<u>link</u>)

- 1st bump realized at +24mm (instead of -24mm) on MQT.14R2.B1, 7.4*10⁹
 p/bunch → lost sector 23! ... but fast recovery, PM from old QPS of
 C14R2: voltage went up to 200 mV!
- Bump from -22mm to -24mm (up to $7*10^9$ p/bunch) \rightarrow up to 10 counts/injection (~10⁷ HEH/cm² below the interconnection)
- Bump was left +24mm (up to $6*10^9$ p/bunch) for ~ 10 minutes in the night (no trip was observed)
- Injection and dump sequence every \sim 45 s (SPS SC) (\sim longer than expected)

R factor evaluation/gradient!

- A good knowledge of R (Φ_{th}/Φ_{HFH}) reduces significantly the uncertainties for the tunnel radiation level estimates
- Its measure with RadMons requires two devices operated at two different voltages (in the same location):
 - 3V, high sensitivity to thermal neutrons
 - 5V, less sensitivity to th. neutrons with respect to high energy hadrons
- Test location have been:
 - Below the MB/MQ interconnect
 - Below the MBC towards MBB

$$r = \frac{S^{5V} \sigma_{HE}^{3V} - S^{3V} \sigma_{HE}^{5V}}{S^{3V} \sigma_{th}^{5V} - S^{5V} \sigma_{th}^{3V}}$$


Below MB/MQ interconnect: $R=1.4 (\pm 40\%)$

Below MBC: R~10 (x2 uncertainty)

Radiation levels integrated over the course of the MD test

BLM/RadMon ratio

- RadMon/BLM ratio \rightarrow in the LHC experimentally found to be ~1 count (@5V)/mGy (±50%)
 - RadMons located below the MB/MQ interconnect, compared with the closest
 BLM at beam height
- A similar comparison has been performed during the MD, taking advantage of the configuration where a BLMMI is installed close to the RadMon below the interconnect
 - 345 counts (2RM20S)/110 mGy (BLMMI.14R2.B1I20) → ~3.1 counts/mGy
 - 345 counts (2RM20S)/325 mGy (BLMQI.14R2.B1I10) → ~1.1 count/mGy
- BLM data confirms the factor of 3x of dose/HEH reduction extracted with FLUKA between beam axis and tunnel floor
 Confirmation of the 1 count/mGy extracted from LHC

BLM/RadMon dose comparison

BLM values	Total dose (bckg subtracted)	RadFETs dose (RadMon)
BLMMI.14R2.B1I10	~1.8 mGy	
BLMMI.14R2.B1I20	110 mGy	~90 mGy (in Si)
BLMQI.14R2.B1I10	~325 mGy	
BLMQI.14R2.B1I20	~1 <i>55</i> mGy	
BLMQI.14R2.B1I30	~70 mGy	\sim 20 mGy (in Si) + \sim 3x lower than at beam axis (\sim 60 mGy)
BLMQI.14R2.B2E10	~25 mGy	
BLMQI.14R2.B2E20	~72 mGy	
BLMQI.14R2.B2E30	~65 mGy	

Notes:

- 1) dose in Si is not the same as the dose measured in BLMs (nitrogen) \rightarrow 30%
- 2) RadFETs sensitivity at the lower edge (~10 mGy), big uncertainties to be expected

 R2E-MD report LSWG 19th July 2011

Main outcomes of the R2E-MD

Preliminary analysis conclusions:

- Evaluation of the HEH gradient
- Evaluation of the R factor ($\Phi_{\rm th}/\Phi_{\rm HEH}$)
- Calculation of the BLM/RadMon ratio for "close" locations (w/mobile BLMs) and "far" locations (w/fixed BLM on the MQ, similar to the LHC)
- Comparison between the RadMon dose and BLM dose
- QPS sensitivity: we observed several "QPS resets", transparent to operation, analysis requested to TE/MPE

 analysis ongoing
- Evaluation of the BLM left/right asymmetry and comments on the +24 and -24 mm asymmetry at MBs → analysis ongoing — BE/BI

