LONGITUDINAL BEAM DYNAMICS

JUAS 2025

COURSE 1: THE SCIENCE OF PARTICLE ACCELERATORS

A. [Lasheen](mailto:alexandre.lasheen@cern.ch)

INTRODUCTION

ACKNOWLEDGEMENTS

- **JUAS FORMER LECTURERS AND THEIR LEGACY**
- **ELIAS, BENOIT, BIRK, DAVID, AND LEANDRO FOR THEIR SUPPORT**
- **THE CERN ACCELERATOR SCHOOL AND ITS NUMEROUS REFERENCES**
- **COLLEAGUES FROM THE RF AND ABP GROUPS, AND THE BR SECTION AT CERN**
- **AND YOU!**

RESOURCES

WEB

E. Metral website, JUAS courses, exercises, exams and [corrections](http://emetral.web.cern.ch/)

COURSES

- G. Dôme, Theory of RF [Acceleration](http://cds.cern.ch/record/185457)
- L. Rinolfi, [Longitudinal](https://cds.cern.ch/record/446961) Beam Dynamics Application to synchrotron
- F. Tecker, [Longitudinal](https://cds.cern.ch/record/2746987) Beam Dynamics in Circular Accelerators
- B. Holzer, Introduction to [Longitudinal](https://cds.cern.ch/record/1693322/) Beam Dynamics
- H. Damerau, Introduction to Non-linear [Longitudinal](https://cds.cern.ch/record/2778374) Beam Dynamics \bullet
- R. Garoby, RF Gymnastics in [Synchrotrons](https://cds.cern.ch/record/1407406)
- B. W. Montague, Single particle dynamics : [Hamiltonian](https://cds.cern.ch/record/864417) formulation \bullet
- W. Pirkl, [Longitudinal](https://cds.cern.ch/record/302486) beam dynamics
- J. Le Duff, [Longitudinal](https://cds.cern.ch/record/398427/) beam dynamics in circular accelerators
- E. [Jensen,](https://cds.cern.ch/record/1982429) RF Cavity Design

RESOURCES

NOTES

- H. G. Hereward, What are the equations for the phase oscillations in a [synchrotron?](http://cds.cern.ch/record/276214)
- J. A. MacLachlan, Difference Equations for [Longitudinal](https://inspirehep.net/files/53264e1b7375b69f6002ddcfdda4c793) Motion in a Synchrotron
- J. A. MacLachlan, Differential Equations for [Longitudinal](https://inspirehep.net/files/6aae2f39d623333c670b56503a1eee5c) Motion in a Synchrotron
- C. Bovet, R. Gouiran, I. [Gumowski,](https://cds.cern.ch/record/104153) K. H. Reich, A selection of formulae and data useful for the design of A.G. [synchrotrons](https://cds.cern.ch/record/104153)

BOOKS

- A. A. Kolomensky, A. N. Lebedev, Theory of Cyclic Accelerators
- H. Bruck, Accelerateurs Circulaires De Particules
- S. Y. Lee, Accelerator Physics
- S. Humphries, Principles of Charged Particle Acceleration
- T. P. Wangler, RF Linear Accelerators \bullet
- H. Wiedemann, Particle Accelerator Physics
- M. Reiser, Theory and Design of Charged Particle Beams

COURSE CONTENT

- 1 Introductory session \bullet
- 10 Teaching modules including
	- **Lecture**
	- Derivations \blacksquare
	- Computational exercises \blacksquare
	- Quizz \blacksquare
	- Interleaving exercises with lecture. The last slot of each afternoon dedicated to \blacksquare tutorials/questions.
- Exam preparation \bullet
- PyHEADTAIL workshop

WEEK 1

WEEK 2

WEEK 3

COURSE LAYOUT

INTRODUCTORY SESSION

- What is longitudinal beam dynamics? \bullet
- How does this lecture relates to the others? \bullet

LESSON 1 - FUNDAMENTALS OF PARTICLE ACCELERATION

- Fields, forces
- Accelerator designs
- Relativistic relationships

COURSE LAYOUT

LESSON 2 - SYNCHROTRON DESIGN

- Equations for the synchronous particle
- One word on betatronic acceleration, synchrotron radiation, self induced fields
- Momentum compaction, differential relationships

LESSON 3 - LONGITUDINAL EQUATIONS OF MOTION

- Equations for non synchronous particles
- Introduction to tracking

COURSE LAYOUT

LESSON 4 - SYNCHROTRON MOTION

- Linearized synchrotron motion \bullet
- Phase stability and synchrotron frequency/tune
- Non-linear synchrotron motion \bullet
- RF bucket, longitudinal emittance, non-linear synchrotron frequency

LESSON 5 - REAL LIFE APPLICATIONS

- Longitudinal bunch profile measurements
- Examples of RF operation
- Introduction to RF manipulations ("gymnastics")

TEACHING AGREEMENT

WHAT YOU SHOULD KNOW AT THE END OF THE COURSE

- Understand how a beam is effectively accelerated in a particle accelerator.
- Understand fundamental concepts of longitudinal beam dynamics (i.e. synchrotron motion, the RF bucket and its parameters).
- How main equations/formulas are derived and underlying assumptions.

WHAT YOU SHOULD BE ABLE TO DO AT THE END OF THE COURSE

- Compute RF parameters and basic design parameters of a synchrotron.
- Interpret the longitudinal motion of a measured bunch of particles.

KEY ASPECTS OF LONGITUDINAL BEAM DYNAMICS

→ Particle acceleration

→ Focusing of particles in the longitudinal direction (bunching)

→ Synchrotron motion

LAYOUT OF A REAL ACCELERATOR

THE LOW ENERGY ION RING (LEIR) AT CERN

- Virtual walk [around](https://panoramas-outreach.cern.ch/viewer?id=36262111) LEIR... (visit on the 29/01!)
- To see other [accelerators](https://panoramas-outreach.cern.ch/index.html) at CERN...

Accelerator seen from above...

Bending magnets **Accelerating RF cavities**

Accelerator seen from above, along the vertical \overline{Y} *axis...*

- The black line represents the (ideal) design trajectory of the beam around which a particle oscillate (blue).
- The accelerator layout can be described in fixed cartesian coordinates $\left(\,X,Z,Y\,\right)$. where the \overline{Y} direction is the vertical direction.
- However, this coordinate system is not suited to describe particle motion in circular accelerators.

FRENET-SERRET COORDINATE SYSTEM

- A particle trajectory follows a curved path, which can be described in the Frenet-Serret coordinate system.
- The particle coordinates are given as offsets with respect to the design trajectory with
	- *x* Horizontal
	- *y* Vertical
	- *z* Longitudinal
- The curvature of the trajectory has a local bending radius *ρ*.

Accelerator seen from above, along the vertical \acute{Y} axis...

- We use the Frenet-Serret coordinate system $(\vec{x}, \vec{z}, \vec{y})$ as reference to describe the motion of particles.
- We introduce the mean radius

$$
R=\frac{C}{2\pi}
$$

where C is the path circumference and the generalized azimuth

 $\theta \in [0,2\pi]$

Accelerator seen from above, along the vertical \overline{Y} *axis...*

- For a circular accelerator, this coordinate system is comparable to the cylindrical $\mathsf{coordinate}$ system $\left(\right.\vec{\rho},\theta,\vec{y}\left.\right)$
- A particle orbit and horzitonal positions are equivalent, as well as the longitudinal position and azimuth.
- Beware, definitions can be interchanged!

Accelerator seen from above, along the vertical \vec{Y} *axis...*

It is also important to disembiguate *ρ* which is the bending radius and R which is the particle orbit including straight sections of total length L . We have

$$
C=2\pi R=L+2\pi\rho
$$

PARTICLE ACCELERATION

- The primary purpose of a particle accelerator is to produce a beam of particles with a precise energy *E*.
- The energy can be provided to the particles applying the Lorentz force to charged particles

$$
\frac{d\vec{p}}{dt} = \vec{F} = q\left(\vec{\cal{E}} + \vec{v}\times\vec{\cal{B}}\right)
$$

where

- $\vec{p} = m\vec{v}$ is the particle momentum
- \overline{q} is the particle charge
- \overline{m} is the particle (relativistic) mass
- \vec{v} is the particle velocity
- F is a force
- $\acute{\mathcal{E}}$ is an electric field
- $\overline{\mathcal{B}}$ is a magnetic field

PARTICLE ACCELERATION

ELECTRIC FIELD CONTRIBUTION

$$
\vec{F_{\mathcal{E}}} = q \ \vec{\mathcal{E}}
$$

- An electric field can effectively **accelerate (or decelerate) particles**.
- Electric fields can also be used to **deflect particles** if applied transversally to the particle trajectory.

MAGNETIC FIELD CONTRIBUTION

$$
\vec{F}_{\mathcal{B}}=q\left(\vec{v}\times\vec{\mathcal{B}}\right)
$$

- The force applied by a magnetic field is always orthogonal to the particle trajectory and therefore **cannot accelerate the beam**.
- Magnetic fields are used to **steer the beam**.

ACCELERATION ALONG THE LONGITUDINAL DIRECTION

• The acceleration is done by applying an electric field tangential to the beam trajectory with

$$
\vec{\cal E}={\cal E}_z\vec{e_z}
$$

- Except at extremely low energies (e.g. particle sources), the momentum of a particle is almost exclusively directed towards the longitudinal direction z with small angles in the transverse x and y directions.
- Assumptions: $p_z \gg p_{x,y}$ and $p \approx p_z$

STEERING THE DESIGN TRAJECTORY

The beam trajectory is steered horizontally by applying a vertical magnetic field with

$$
\vec{\mathcal B} = \mathcal B_y \vec{e_y}
$$

- The applied force depends on the particle velocity v_z . For particles with different momenta, the steering and trajectories will be different than the design one.
- This effect is called dispersion and will be covered in both transverse and longitudinal beam dynamics lectures.

EVOLUTION OF RELATIVE PARTICLE POSITIONS

- In the longitudinal direction, a particle can be in front (in advance), or behind (late) with respect to the **ideal particle (on time)**.
- The relative distance between particles can change
	- Because a particle can also have a smaller/larger velocity v_z (and momentum p_z).

EVOLUTION OF RELATIVE PARTICLE POSITIONS

Red is faster but at larger orbit, while blue is slower but inner orbit.

How do we accelerate all three particles evenly? How do we keep these particles together?

- In the longitudinal direction, a particle can be in front (in advance), or behind (late) with respect to the **ideal particle (on time)**.
- The relative distance between particles can change
	- Because a particle can also have a smaller/larger velocity v_z (and momentum p_z).
	- Because of a shorter/longer path length in a bending (i.e. smaller/larger orbit), which depends on the particle momentum.

LONGITUDINAL PHASE SPACE

- We will introduce the notion of longitudinal phase space.
- The particle motion can be described in the (z,p_z) phase space, relative to the **ideal particle** following the design orbit and energy.
- As described before other particles can be
	- In front, or in advance in time (right)
	- In the back, or delayed in time (left)
	- Have higher momentum/velocity (top)
	- Have lower momentum/velocity (bottom)
- The motion of the particles in the longitudinal phase space is called **synchrotron motion**.

SYNCHROTRON OSCILLATIONS

WITH A FEW PARTICLES

In a bunch, particles rotate around the ideal particle in black used a reference.

These are called **synchrotron oscillations**.

SYNCHROTRON OSCILLATIONS

WITH MANY PARTICLES

- A bunch is usually composed of a very large number of particles, typically $\mathcal{O}\left(10^{10}-10^{12}\right)$ at CERN.
- In a real machine, the coherent motion of a bunch can be measured and analyzed from the longitudinal bunch density (top line, projection along the *p^z* axis, instantaneous beam current).
- You can notice the non-linear synchrotron motion in phase space at large amplitude.

TEMPORAL DEFINITION OF A BEAM

- Controlling the synchrotron motion allows to define the temporal structure of a pulse of particles.
- The beam current is

$$
I=\frac{dQ}{dt}
$$

where *dQ* is the charge passing in a time *dt*.

Depending on the destination (experiment or next machine in a chain), parameters defining the synchrotron motion can be adjusted to deliver a continuous or bunched beam.

WHAT IS LONGITUDINAL BEAM DYNAMICS?

- Longitudinal beam dynamics is the description of the acceleration and motion of particles along the forward path of the beam.
- Since the orbit of a particle also plays a role, we will see that the horizontal/radial position of a particle is an important parameter.
- We will derive the equations to describe synchrotron oscillations in longitudinal phase space.

RELATIONSHIP WITH OTHER COURSES

JUAS COURSE 1

How do we focus the beam in the horizontal and vertical directions, how do we transport the beam to a target?

→ Transverse Beam Dynamics

Can we use the beam in another way than colliding on a target, what is the principle behind light sources ?

→ Synchrotron radiation

- Do charged particles interact with each other, can we accelerate an infinite amount of particles?
- **→ Collective Effects - Space Charge and Instabilities**

RELATIONSHIP WITH OTHER COURSES

JUAS COURSE 1

- This course is devoted to describe fundamentals of longitudinal beam dynamics with specifities linked to the design of **Synchrotrons**.
- Dedicated courses are devoted to the specificities of **Linacs** and **Cyclotrons**.
- You will find similar concepts between the courses. Nonetheless, beware of definitions, conventions and assumptions used to derive formulas!

RELATIONSHIP WITH OTHER COURSES

JUAS COURSE 2

- What systems do we use to provide the beam with an electric field, how are they designed ?
- **→ RF Engineering and Superconducting RF Cavities**
- How do we measure a bunch, specificially in the longitudinal plane?
- **→ Beam Instrumentation**

TAKE AWAY MESSAGE

Lorentz force

$$
\frac{d\vec{p}}{dt} = \vec{F} = q\left(\vec{\cal{E}} + \vec{v}\times\vec{\cal{B}}\right)
$$

- Definition of coordinates
	- horizontal position *x*
	- y vertical position
	- z longitudinal position

 $\vec{\mathcal{E}}$ to accelerate and deflect $\vec{\mathcal{B}}$ to bend trajectories

- ρ local bending radius
- R mean radius / orbit
- azimuth *θ*
- Assumptions made so far: $p_z \gg p_{x,y}$ and $p \approx p_z$

