Transverse Beam Optics II

Bernhard Holzer, CERN

The Ideal World: Particle Trajectories & Beams

Reminder of Part I

Equation of Motion:

Solution of Trajectory Equations

 $\overline{}$

⎠

 \vert \vert

 \setminus

$$
x'' + K x = 0
$$
 $K = (\frac{1}{\rho^2} - k) = 0$... *hor. plane:*
 $K = k$... *vert. Plane:*

1 $\sqrt{80}$ * s_1 $\left(x'\right)_s$ *x M x x* \vert $\overline{}$ ⎠ ⎞ $\overline{}$ $\mathsf I$ ⎝ $\sqrt{2}$ $\int_{s_1} = M^* \left| \frac{1}{x'} \right|$ $\overline{ }$ ⎞ $\overline{}$ $\mathsf I$ ⎝ $\sqrt{}$ \mathbf{r}

$$
M_{drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}
$$

$$
M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}l) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}l) \\ -\sqrt{|K|}\sin(\sqrt{|K|}l) & \cos(\sqrt{|K|}l) \end{pmatrix}
$$

B. J. Holzer, CERN JUAS Trans Dyn 2, 2025 2 $\overline{}$ \lfloor $\mathsf I$ ⎝ $\sqrt{2}$ = $K \sinh(\sqrt{|K|}l \quad \cosh(\sqrt{|K|}l$ $K|l$ *K* $K|l$ \overline{M}_{defoc} $\sinh(\sqrt{K}l)$ cosh($\cosh(\sqrt{Kt})$ $\frac{1}{\sqrt{2\pi}}\sinh(\sqrt{Kt})$

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit linear increasing Lorentz force linear increasing magnetic field $B_y = g x$ $B_x = g y$

 normalised quadrupole field:

gradient of a quadrupole magnet:

$$
g = |\frac{\partial B_y}{\partial x}|
$$

normalised gradient

p e $k = \frac{g}{g}$ $=\frac{8}{p/2}$

LHC main quadrupole magnet $g \approx 25 ... 220$ *T* / *m*

$$
\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho} \quad k := \frac{g}{p/q}
$$

what about the vertical plane: ... Maxwell

$$
\vec{\nabla} \times \vec{B} = \cancel{\chi} + \frac{\partial \vec{E}}{\partial x} = 0
$$

\n
$$
\Rightarrow \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y}
$$

\n*B. J. Holzer, CERN*

B. JUAS Trans Dy

9.) Orbit & Tune:

Tune: number of oscillations per turn

 64.31 59.32

Relevant for beam stability: non integer part

LHC revolution frequency: 11.3 kHz 0.31*11.3 = 3.5*kHz*

The Symphony of the Beam ???

What would happen if we would connect the tune signal to a loud speaker ?

Multiple Choice:

- **a) Nothing, in vacuum we cannot hear sound.**
- **b) we would not hear anything, as the frequency is well beyond our ear's sensitivity.**
- **c) we would hear "the sound of silence", LOL**
- **d) well …**

Question: what will happen, if the particle performs a second turn ?

Question: what will happen, if the particle performs a second turn ?

... or a third one or ... 1010 turns

s

11.) Hill's Equation:

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion: $x''(s) + K(s) \cdot x(s) = 0$ *Hill's equation*

 $k(s+L) = k(s)$, periodic function $k(s+L) = k(s)$, periodic function s in the ring.

 restoring force ≠ const, we expect a kind of quasi harmonic $k(s)$ = depending on the position s $k(s)$ = $\frac{ds}{ds}$ oscillation: amplitude & phase will depend

Hill's Equation:

Hill's equation: the origins

ON THE PART OF THE

MOTION OF THE LUNAR PERIGEE

WHICH IS A FUNCTION OF THE

MEAN MOTIONS OF THE SUN AND MOON

BY

G. W. HILL in WASHINGTON.

 Hill's original paper on orbital mechanics (1886)

12.) The Beta Function

General solution of Hill´s equation (… Floquet's theorem, see e.g. cern-94-01)

Ansatz:
$$
x(s) = \sqrt{\epsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)
$$
 (i)

 $β(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles *ε, Φ = integration constants determined by initial conditions*

 $β(s+L) = β(s)$

Inserting (i) into the equation of motion …

$$
\psi(s) = \int_{0}^{s} \frac{ds}{\beta(s)}
$$

 $\Psi(s) =$, phase advance" of the oscillation between point $, 0$ " and $, s$ " in the lattice. *For one complete revolution: number of oscillations per turn "Tune"*

$$
Q_y = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}
$$

B. J. Holzer, CERN JUAS Trans Dyn 2, 2025

The Beta Function

Amplitude of a particle trajectory:

 $x(s) = \sqrt{\varepsilon} \cdot \sqrt{\beta(s)} \cos(\psi(s) + \phi)$

Maximum size of a particle amplitude

 $\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$

β determines the beam size (... the envelope of all particle trajectories at a given position "s" in the storage ring.

It reflects the periodicity of the magnet structure.

13.) Beam Emittance and Phase Space Ellipse

general solution of Hill equation

(1)
$$
x(s) = \sqrt{\epsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi)
$$

(2) $x'(s) = -\frac{\sqrt{\epsilon}}{\sqrt{\beta(s)}} \{\alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi)\}$

 from (1) we get

$$
\cos(\psi(s) + \phi) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\beta(s)}}
$$

$$
\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)}
$$

Insert into (2) and solve for ε

 $\mathcal{E} = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s)$

** ε is a constant of the motion ... it is independent of "s" * parametric representation of an ellipse in the x x' space * shape and orientation of ellipse are given by α, β, γ*

B. J. Holzer, CERN JUAS Trans Dyn 2, 2025 13

2

s

Beam Emittance and Phase Space Ellipse

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties. Scientifiquely speaking: area covered in transverse x, x´ phase space … and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x´ for each linear accelerator element according to matrix formalism

plot x, x'as a function of "s"

… and now the ellipse:

note for each turn x, x'at a given position "s₁" and plot in the phase space diagram

Calculate x, x´ for each accelerator element according to matrix formalism and plot x, x'at a given position "s" turn by turn in the phase space diagram

Phase Space Ellipse

 $particle trajectory:$

$$
x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left\{\psi(s) + \phi\right\}
$$

$$
max. Amplitude: \qquad \hat{x}(s) = \sqrt{\epsilon \beta} \qquad \longrightarrow \ x' \text{ at that position } ...?
$$

... put
$$
\hat{x}(s)
$$
 into $\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$ and solve for x'

$$
\varepsilon = \gamma \cdot \varepsilon \beta + 2\alpha \sqrt{\varepsilon \beta} \cdot x' + \beta x'^2
$$

$$
\xrightarrow{\qquad \qquad x' = -\alpha \cdot \sqrt{\varepsilon/\beta}}
$$

** A high β-function means a large beam size and a small beam divergence. … et vice versa !!!*

*** In the middle of a quadrupole β = maximum, $a = zero$ $x' = 0$

… and the ellipse is flat

!

Phase Space Ellipse

$$
\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s) x(s) x'(s) + \beta(s) x'^{2}(s)
$$

$$
\alpha(s) = \frac{-1}{2} \beta'(s)
$$

$$
\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)}
$$

$$
\epsilon = \frac{x^2}{\beta} + \frac{\alpha^2 x^2}{\beta} + 2\alpha \cdot xx' + \beta \cdot x'^2
$$

 $\overline{}$

$$
\cdots \textit{solve for x'} \quad x'_{1,2} = \frac{-\alpha \cdot x \pm \sqrt{\epsilon \beta - x^2}}{\beta}
$$

... and determine
$$
\hat{x}'
$$
 via: $\frac{dx'}{dx} = 0$

 $\hat{\chi}^\prime = \sqrt{\epsilon \gamma}$

 $\hat{x} = \pm \alpha \sqrt{\frac{\epsilon}{\gamma}}$

$$
\frac{x}{\sqrt{\epsilon \gamma}}
$$

shape and orientation of the phase space ellipse depend on the Twiss parameters β α γ

Liouville states that phase space is conserved.

Primarily, this refers to 6-dimensional phase space (x-x ́, y-y ́ and s-dp/p).

When the component phase spaces are uncoupled, the phase space is conserved within the 2- dimensional and/or 4-dimensional spaces.

The invariant of the motion in the uncoupled x-x ́or y-y ́ spaces is another way of saying the phase space is conserved.

Phase space is not conserved if ions change, e.g. by stripping or nuclear fragmentation, or if non-Hamiltonian forces appear e.g. scattering or photon emission.

(Phil Bryant)

Phase Space Area & Emittance

shape and orientation of the phase space ellipse depend on the Optics parameters α, β, γ

The emittance of a beam is related to the phase-space area that it occup *and is therefore related to the motion invariants of the constituent ions. A practical definition of emittance requires a choice for the limiting ellipse that defines the phase-space area of the beam. Usually this is related to some number of standard deviations of the beam distribution, for example "the 1-sigma emittance is … " .*

(Phil Bryant)

14.) Theorem of Liouville

… and now the ellipse:

note for each turn x, x'at a given position "s" and plot in the phase space diagram

under the influence of conservative forces, the particle kinematics will always follow an ellipse in phase space x, x'phase space volume = constant

We use the area of that beam-ellipse as quality attribute for the particle ensemble: A= ε π

 $\sqrt{\epsilon \beta}$

x

Time for a blue Slide …

Why do we do that ?

—> the beam size is given by two parameters: β function - focusing properties ε as intrinsic beam quality

—> beam size:

$$
\sigma = \sqrt{\varepsilon \cdot \beta}
$$

—> the stability of the phase space ellipse, ε, tells us about the stability of the particle oscillation, which is … … "the lifetime" of the beam.

—> the size of the ellipse tells us about the particle density, … which is the beam quality in collision.

Phase Space & Real Space

… don't worry: it takes some time to fully find your way in both worlds.

A real Beam:

particle bunch

Gauß Particle Distribution:

2 2 2 1 $f(x) = \frac{1}{\sqrt{2\pi}\sigma_x} \cdot e^{-2\sigma_x}$ *x x e* $N \cdot e$ $f(x) = \frac{f(x) - e^{-x}}{x}$ · $e^{-2\sigma}$ πσ $\rho(x) = \frac{N \cdot e}{\sqrt{2}} \cdot e^{-x}$

single particle trajectories, N ≈ 10 11 per bunch

aperture requirements: $r_{0} \geq 10 * \sigma$

Emittance and Beam Size:

15.) Statistical Definition of Emittance:

The emittance is the quality parameter of the particle distribution

the ideal case … that never really exists … laminar ("LASER like) beam

Maxwell distribution:

source temperature "T" kinetic energy per degree of freedom:

$$
E_{kin} = \frac{1}{2}kT
$$

transverse momentum of the particles:

$$
\frac{1}{2}mv_x^2 = \frac{p_x^2}{2m} = \frac{1}{2}kT \quad \longrightarrow \quad \sqrt{p_x^2} > \sqrt{mk}
$$

the particles have an intrinsic (transverse) momentum distribution

Statistical Definition of Emittance:

The r.m.s. emittance is a statistical definition of the amount of phase space covered by a beam. If the beam is centred, (symmetric situation) $\langle x \rangle = \langle x' \rangle = 0$ *) we can write:*

$$
\varepsilon_{rms} = \frac{1}{N} \sqrt{\Sigma x^2 \Sigma x^2 - (\Sigma x x')^2}
$$

If we really refer to the actual particle distribution our emittance definition is much more precise.

We can translate into our Twiss language via:

$$
\gamma_x \cdot \varepsilon_{rms} = \langle x^2 \rangle = \sigma_{x'}^2
$$

$$
\beta_x \cdot \varepsilon_{rms} = \langle x^2 \rangle = \sigma_x^2
$$

$$
\alpha_x \cdot \varepsilon_{rms} = \langle x x' \rangle
$$

The beam is composed of particles distributed in phase space.

Emittance Dilution:

As soon as we inject the beam into an accelerator lattice, it is the actual Twiss parameters, that define the phase space ellipse in its shape and orientation.

We should optimise the α, β, γ to fit as much as possible to the actual distribution.

And we should keep ε as small as possible.

In the synchrotron each single particle will follow its phase space ellipse, that is defined by the ring optics.

Filamentation

Non-linear effects (e.g. magnetic field multipoles) distort the harmonic oscillation and lead to amplitude dependent effects in the particle motion in phase space.

Over many turns, a non-ideal phase-space distribution is smeared out and transformed into an emittance increase.

1.5

 0.5

 -0.5

 -1 -1.5

 -1.5

 $JUAS$ Trans Dyn 2, 2025 29

16.) Transfer Matrix M … yes we had the topic already

general solution of Hill´s equation

$$
x(s) = \sqrt{\epsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\}
$$

$$
x'(s) = \frac{-\sqrt{\epsilon}}{\sqrt{\beta(s)}} \left[\alpha(s) \cos \{\psi(s) + \phi\} + \sin \{\psi(s) + \phi\}\right]
$$

remember the trigonometrical gymnastics: sin(a + b) = … etc

$$
x(s) = \sqrt{\varepsilon} \sqrt{\beta_s} \left(\cos \psi_s \cos \phi - \sin \psi_s \sin \phi \right)
$$

$$
x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta_s}} \left[\alpha_s \cos \psi_s \cos \phi - \alpha_s \sin \psi_s \sin \phi + \sin \psi_s \cos \phi + \cos \psi_s \sin \phi \right]
$$

starting at point s(0) = s₀, where we put $\Psi(0) = 0$

$$
\cos \phi = \frac{x_0}{\sqrt{\epsilon \beta_0}},
$$

$$
\sin \phi = -\frac{1}{\sqrt{\epsilon}} (x'_0 \sqrt{\beta_0} + \frac{\alpha_0 x_0}{\sqrt{\beta_0}})
$$

inserting above …

$$
x(s) = \sqrt{\frac{\beta_s}{\beta_0}} \left\{ \cos \psi_s + \alpha_0 \sin \psi_s \right\} x_0 + \sqrt{\beta_s \beta_0} \sin \psi_s \frac{\lambda'_0}{\lambda'_0}
$$

$$
x'(s) = \frac{1}{\sqrt{\beta_s \beta_0}} \left\{ (\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s \frac{\lambda'_0}{\lambda'_0} + \sqrt{\frac{\beta_0}{\beta_s}} \left\{ \cos \psi_s - \alpha_s \sin \psi_s \frac{\lambda'_0}{\lambda'_0} \right\} \right\}
$$

which can be expressed ... for convenience ... in matrix form

$$
\begin{pmatrix} x \\ x' \end{pmatrix}_s = M \begin{pmatrix} x \\ x' \end{pmatrix}_0
$$

$$
M = \left(\frac{\sqrt{\frac{\beta_s}{\beta_0}}\left(\cos\psi_s + \alpha_0\sin\psi_s\right)}{\frac{(\alpha_0 - \alpha_s)\cos\psi_s - (1 + \alpha_0\alpha_s)\sin\psi_s}{\sqrt{\beta_s\beta_0}}}\sqrt{\frac{\beta_0}{\beta_s}}\left(\cos\psi_s - \alpha_s\sin\psi_s\right)\right)
$$

** we can calculate the single particle trajectories between two locations in the ring, if we know the α β γ at these positions. * and nothing but the α β γ at these positions.*

B. J. Holzer, CERN JUAS Trans Dyn 2, 2025 31

** … !* * Äquivalenz der Matrizen

17.) Periodic Lattices

transfer matrix for particle trajectories as a function of the lattice parameters

ELSA Electron Storage Ring

$$
M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos \psi_s + \alpha_0 \sin \psi_s \right) & \sqrt{\beta_s \beta_0} \sin \psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta s}} \left(\cos \psi_s - \alpha_s \sin \psi_s \right) \end{pmatrix}
$$

"This rather formidable looking matrix simplifies considerably if we consider one complete turn …"

One Turn Matrix

$$
M(s) = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_{turn} & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix} \qquad \psi_{turn} = \int_s^{s+L} \frac{ds}{\beta(s)}
$$

ψ turn = phase advance per period ⎟

Tune: Phase advance per turn in units of $2π$

$$
Q = \frac{1}{2\pi} * \oint \frac{ds}{\beta(s)}
$$

Stability Criterion:

Question: what will happen, if we do not make too many mistakes and your particle performs one complete turn ?

Matrix for 1 turn:

$$
M = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_{turn} & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix} = \cos\psi \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin\psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}
$$

Matrix for N turns:

$$
M^N = (I \cos\psi + J \sin\psi)^N = I \cos N\psi + J \sin N\psi
$$

The motion for N turns remains bounded, if the elements of MN remain bounded

$$
\psi = real \qquad \Leftrightarrow \qquad |\cos\psi| < 1 \qquad \Leftrightarrow \qquad |Trace(M)| < 2
$$

stability criterion …. proof for the disbelieving collegues !!

Matrix for 1 turn:
$$
M = \begin{pmatrix} \cos\psi_{turn} + \alpha_s \sin\psi_{turn} & \beta_s \sin\psi_{turn} \\ -\gamma_s \sin\psi_{turn} & \cos\psi_{turn} - \alpha_s \sin\psi_{turn} \end{pmatrix} = \cos\psi \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin\psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}
$$

Matrix for 2 turns:

$$
M^{2} = (I \cdot \cos \psi_{1} + J \cdot \sin \psi_{1}) \cdot (I \cdot \cos \psi_{2} + J \cdot \sin \psi_{2})
$$

 $1 \sin \psi_2$ 2 $I = I^2 * cos\psi_1 cos\psi_2 + IJ * cos\psi_1 sin\psi_2 + JI * sin\psi_1 cos\psi_2 + J^2 sin\psi_1 sin\psi_2$

now …

$$
I^2 = I
$$

\n
$$
I^*J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}
$$

\n
$$
J^*I = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}
$$

\n
$$
J^2 = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha^2 - \gamma\beta & \alpha\beta - \beta\alpha \\ -\gamma\alpha + \alpha\gamma & \alpha^2 - \gamma\beta \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I
$$

 $M^2 = I^* \cos(\psi_1 + \psi_2) + J^* \sin(\psi_1 + \psi_2)$

 $M^2 = I^* \cos(2\psi) + J^* \sin(2\psi)$

18.) Transformation of α, β, γ

consider two positions in the storage ring: s_0 , s

$$
\begin{pmatrix} x \\ x' \end{pmatrix}_s = M \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}
$$

where ...
$$
M = M_{QF} \cdot M_{QD} \cdot M_B \cdot M_{Drift} \cdot M_{QF} \cdot ...
$$

\n
$$
\begin{pmatrix}\n\cos(\sqrt{|K|} \cdot l_q) & \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|} \cdot l_q)\n\end{pmatrix}
$$

for a single element, e.g. …

$$
M_{\text{foc}} = \begin{pmatrix} \cos(\sqrt{|K|} \cdot l_q) & \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|} \cdot l_q) \\ -\sqrt{|K|} \cdot \sin(\sqrt{|K|} \cdot l_q) & \cos(\sqrt{|K|} \cdot l_q) \end{pmatrix} = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix}
$$

for a sequence of elements …

$$
M_{\text{seq}} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix}
$$

express x_0 , x'_0 *as a function of x, x'.*

$$
\begin{pmatrix} x \ x' \end{pmatrix}_s = M \cdot \begin{pmatrix} x \ x' \end{pmatrix}_{s_0}
$$

 $...$ remember $W = CS'$ -SC['] = 1

$$
\begin{pmatrix} x \ x' \end{pmatrix}_0 = M^{-1} \cdot \begin{pmatrix} x \ x' \end{pmatrix}_s
$$

\n
$$
M^{-1} = \frac{1}{det(M)} \begin{pmatrix} m_{22} & -m_{12} \ -m_{21} & m_{11} \end{pmatrix} = \begin{pmatrix} S' & -S \ -C' & C \end{pmatrix}
$$

\n
$$
x'_0 = -C'x + Cx'
$$

\n
$$
x'_0 = -C'x + Cx'
$$

\n
$$
= 1
$$

inserting into ε

$$
\varepsilon = \beta x'^2 + 2\alpha xx' + \gamma x^2
$$

$$
\varepsilon = \beta_0 (Cx' - C'x)^2 + 2\alpha_0 (S'x - Sx')(Cx' - C'x) + \gamma_0 (S'x - Sx')^2
$$

 \bullet

 S_0

sort via x, x´and compare the coefficients to get

B. J. Holzer, CERN JUAS Trans Dyn 2, 2025 36

s

θ

ˆ z

$$
\beta(s) = C^2 \beta_0 - 2SC\alpha_0 + S^2 \gamma_0
$$

\n
$$
\alpha(s) = -CC' \beta_0 + (SC' + S'C)\alpha_0 - SS' \gamma_0
$$

\n
$$
\gamma(s) = C'^2 \beta_0 - 2S'C'\alpha_0 + S'^2 \gamma_0
$$

in matrix notation:

$$
\begin{pmatrix}\n\beta \\
\alpha \\
\gamma\n\end{pmatrix}_{s} = \begin{pmatrix}\nC^2 & -2SC & S^2 \\
-CC' & SC' + CS' & -SS'\n\end{pmatrix} \cdot \begin{pmatrix}\n\beta_0 \\
\alpha_0 \\
\gamma_0\n\end{pmatrix}
$$

1.) this expression is important

- *2.) given the Twiss parameters α, β, γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.*
- *3.) the transfer matrix is given by the focusing properties of the lattice elements, the elements of M are just those that we used to calculate single particle trajectories.*
- *4.) go back to point 1.)*

!

Résumé:

equation of motion: $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s) \cdot \cos(\psi(s) + \phi)}$ $x''(s) + K(s) x(s) = 0$, $K = 1/\rho^2 - k$

phase advance & tune:

$$
\Psi_{12}(s) = \int_{s_1}^{s_2} \frac{1}{\beta(s)} ds
$$
, $Q(s) = \frac{1}{2\pi} \oint_{\beta(s)} \frac{1}{\beta(s)} ds$

emittance:

$$
\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)
$$

transfer matrix from
$$
s_1 \longrightarrow s_2
$$
:

\n
$$
M = \begin{pmatrix}\n\sqrt{\frac{\beta_s}{\beta_0}} (\cos \psi_s + \alpha_0 \sin \psi_s) & \sqrt{\beta_s \beta_0} \sin \psi_s \\
\frac{(\alpha_0 - \alpha_s) \cos \psi_s - (1 + \alpha_0 \alpha_s) \sin \psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta_s}} (\cos \psi_s - \alpha_s \sin \psi_s)\n\end{pmatrix}
$$

matrix for 1 turn:

$$
M(s) = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_{turn} & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix}
$$

stability criterion:

B. J. Holzer, CERN JUAS Trans Dyn 2, 2025 38

 $|Trace(M)| < 2$