Transverse Beam Optics V

Bernhard Holzer CERN

Particle Colliders

28.) Insertions

Arc: regular (periodic) magnet structure:

bending magnets —> define the energy of the ring main focusing & tune control, chromaticity correction, multipoles for higher order corrections

Straight sections:

 drift spaces for injection, dispersion suppressors, low beta insertions, RF cavities, etc.... … and the high energy experiments if they cannot be avoided

General Aspects:

Fixed target < — > beam-beam collisions

Collider experiments: E=mc2

 $Z_0 \longrightarrow e+e-pair$ (white dashed lines) *low event rate (luminosity) high energy reach*

 $E_{lab} = E_{beam} + E_{beam}$

Insertions for Particle Colliders

 ... the most complicated one: the drift space

Question to the audience: what will happen to the beam parameters α, β, γ if we stop focusing for a while …?

$$
\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{S} = \begin{pmatrix} C^{2} & -2SC & S^{2} \\ -CC^{*} & SC^{+}S^{*}C & -SS^{*} \\ C^{*2} & -2S^{*}C^{*} & S^{*2} \end{pmatrix} * \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{0}
$$

transfer matrix for a drift:

$$
M = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}
$$

$$
\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2
$$

\n
$$
\alpha(s) = \alpha_0 - \gamma_0 s
$$

\n
$$
\gamma(s) = \gamma_0
$$

location of the waist:

given the initial conditions α0, β0, γ0 : where is the point of smallest beam dimension in the drift … or at which location occurs the beam waist ?

beam waist:

$$
\alpha(s) = 0 \qquad \rightarrow \qquad \alpha_0 = \gamma_0 * s \qquad \beta = \alpha_0
$$

$$
\ell = \frac{\alpha_0}{\gamma_0}
$$

beam size at that position:

$$
\left\{\n\begin{array}{l}\n\gamma(\ell) = \gamma_0 \\
\alpha(\ell) = 0\n\end{array}\n\right\} \rightarrow \gamma(l) = \frac{1 + \alpha^2(\ell)}{\beta(\ell)} = \frac{1}{\beta(\ell)}
$$

 $\beta(\ell) = \frac{1}{\gamma_0}$

β-Function in a Drift:

let's assume we are at a symmetry point in the center of a drift.

$$
\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2
$$

$$
as \qquad \alpha_0 = 0, \qquad \Rightarrow \qquad \gamma_0 = \frac{1 + {\alpha_0}^2}{\beta_0} = \frac{1}{\beta_0}
$$

and we get for the β function in the neighbourhood of the symmetry point

$$
\beta(s) = \beta_0 + \frac{s^2}{\beta_0}
$$

Nota bene:

B. J. Holzer, CERN JUAS 2025 Transverse Beam Dynamics 5 6 1.) this is very bad !!! 2.) this is a direct consequence of the conservation of phase space density (... in our words: ε = const) … and there is no way out. 3.) Thank you, Mr. Liouville !!!

Joseph Liouville, 1809-1882

A bit more in detail: β-Function in a Drift

Optimisation of the beam dimension at position $s = \ell$ *: If we cannot fight against Liouville's theorem ... at least we can optimise*

$$
\beta(\ell) = \beta_0 + \frac{\ell^2}{\beta_0}
$$

Find the β at the center of the drift that leads to the lowest maximum β at the end:

If we choose $\beta_0 = \ell$ *we get the smallest* β *at the end of the drift and the maximum β is just twice the distance ℓ*

In any case: keep ℓ as SMALL as possible !!!

Prepare for Beam collisions

 keep ℓ *as SMALL as possible !!!*

… there is just a little problem

... clearly there is another problem !!!

... unfortunately ... in general high energy detectors that are installed in that drift spaces are a little bit bigger than a few centimeters ...

... and why all that ?? High Light of the HEP-Year 2012 / 13 naturally the HIGGS

ATLAS event display: Higgs => two electrons & two muons

 $E = m_0 c^2 = m_{el} + m_{e2} + m_{\mu} + m_{\mu} = 125.4 \text{ GeV}$

The only chance we have: compress the transverse beam size … at the IP

LHC typical \rightarrow *16 µm*

The Collider Performance: Luminosity

Event Rate: "Physics" per Second

 $R = L \cdot \Sigma_{react}$

L = Luminosity

Example: Luminosity run at LHC

Mini-β Insertions: practical guide lines

** calculate the periodic solution in the arc*

 ** introduce the drift space needed for the insertion device (detector ...)*

** put a quadrupole doublet (triplet ?) as close as possible*

** introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure*

8 individually powered quad magnets are needed to match the insertion (... at least)

30.) Lattice Design

Whenever we combine two different lattice structures we need a "matching section" in between to adapt the optics functions between the two lattices. In this matching section we need as many independent quadrupoles as parameters that we have to match.

Usual parameters to be optimised & matched:

 α_{y} , β_{y} *Q_x*, *Q_y* (...or phase advance) α_x , β_x *D*_x, *D*_x[']

One word about Mini-Beta Insertions:

Mini Beta Insertions must be installed in

… straight sections (no dipoles that drive dispersion)

… that are dispersion free

… that are connected to the arc lattice by dispersion suppressors

if not, the dispersion dilutes the particle density and increases the effective transverse beam size.

Mini-β Insertions: Phase advance

By definition the phase advance is given by:

 $(s) = \int \frac{1}{\beta(s)}$ $s = \int \frac{1}{2} ds$ $\Phi(s) = \int \frac{1}{\beta(s)}$

Now in a mini β insertion:

$$
\beta(s) = \beta_0 \ \ (1 + \frac{s^2}{\beta_0^2})
$$

$$
\Rightarrow \Phi(s) = \frac{1}{\beta_0} \int_0^L \frac{1}{1 + s^2 / \beta_0^2} ds = \arctan \frac{L}{\beta_0}
$$

B. J. Holzer, CERN JUAS 2025

Consider the drift spaces on both sides of the IP:

the phase advance of a mini β insertion is approximately π,

in other words: the tune will increase by half an integer.

Mini-β Insertions: A look into Phase Space

at a symmetry point β is just the ratio of beam dimension and beam divergence.

Are there any problems ??

sure there are ...

- ** aperture of mini β quadrupoles limit the luminosity*
- ** remember: large apertures make weak quads*

gradient of a quadrupole $\sigma = \frac{2\mu}{g}$ *magnet:*

beam envelope at the first mini β quadrupole lens in the HERA proton storage ring

> *keep distance* "s" to the first *mini β quadrupole as small as possible to limit β*̂

 $\overline{\mathbf{e}}$ $g = \frac{2\mu_0 nI}{I^2}$

r

… and now back to the Chromaticity

$$
Q' = -\frac{1}{4\pi} \oint k(s) \widehat{\beta(s)} ds
$$

Mini-Beta Insertion

Whenever we collide the beams the beam size has to be small to get highest luminosity.

This adds a large contribution to the chromaticity.

Which needs to be corrected by (non-linear) sextupole fields.

Non-linear fields however disturb the harmonic motion and can lead to particle losses.

Correction of Q':

Sextupole Magnets:

$\frac{1}{2}k_2 * x$ *p e* k_1 (sext) = $\frac{f(x)}{g(x)} k_2$ / ~ I_1 (sext) = λ λ k *p* $k_1(sext) = k_2 * D * \frac{\Delta p}{\Delta}$ *k2 normalised sextupole strength*

k1 normalised quadrupole strength

corrected chromaticity

counter acting effect in the two planes

$$
Q'_{x} = -\frac{1}{4\pi} \oint \beta_{x}(s) \left[+k_{q}(s) - S_{F}D_{x}(s) + S_{D}D_{x}(s) \right] ds
$$

$$
Q'_{y} = -\frac{1}{4\pi} \oint \beta_{y}(s) \left[-k_{q}(s) + S_{F}D_{x}(s) - S_{D}D_{x}(s) \right] ds , \quad \text{with} \quad S_{F} = k_{2}^{F}
$$

with
$$
S_F = k_2^F \cdot l_{\text{sext}}
$$
, $S_D = k_2^D \cdot l_{\text{sext}}$

B. J. Holzer, CERN JUAS 2025 Transverse Beam Dynamics 5 21 *"natural" chromaticity sextupole correction of chromaticity*

 \times

n*l

31.) Particle Tracking Calculations

Again: the phase space ellipse for each turn write down – at a given position "s" in the ring – the *single particle amplitude x and the angle x´... and plot it.* $\overline{}$ $\sqrt{2}$

$$
\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{turn} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}
$$

4 particles, each having a slightly different emittance: observed in phase space, in a linear lattice

Particle Tracking Calculations

particle vector:
$$
\begin{pmatrix} x \\ x' \end{pmatrix}
$$
 field: $B = \begin{pmatrix} g'xz \\ \frac{1}{2}g'(x^2 - z^2) \end{pmatrix}$

Idea:

 And if you encounter a nonlinear element (e.g. sextupole): stop and calculate explicitly the magnetic field at the particles coordinate. —> determine the Lorentz-force and thus the new x'.

… calculate kick on the particle …

… and continue with the linear matrix transformations

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. —> no equations; instead: Computer simulation " particle tracking "

Installation of a strong (!!!) sextupole magnet

The non-linear field effects are so strong, that - from a certain amplitude x - they destroy the stability of the motion and the particles are lost.

"Dynamic Aperture"

Than'x for your attention