Throughput Models of traccc

Stephen Nicholas Swatman ACTS Parallelization Meeting Friday, January 24th, 2024

Recap: Lipstick

- Presented earlier this year
- Optimistic throughput model for heterogeneous task graph applications
- How did it work?

2. Convert flow problem to LP

find \vec{x} that maximises $\sum_{e \in E^-(t)} \vec{x}_e$ subject to $\forall e \in E : 0 \le \vec{x}_e \le f(e)$ $\forall v \in V \setminus \{s, t\} : \sum_{e \in E^+(v)} \vec{x}_e = \sum_{e \in E^-(v)} \vec{x}_e$

2. Convert flow problem to LP

find \vec{x} that maximises $\sum_{e \in E^-(t)} \vec{x}_e$ subject to $\forall e \in E : 0 \le \vec{x}_e \le f(e)$ $\forall v \in V \setminus \{s, t\} : \sum_{e \in E^+(v)} \vec{x}_e = \sum_{e \in E^-(v)} \vec{x}_e$

3. Add resource constraints

 $\begin{array}{ll} \mbox{find} & \vec{x} \\ \mbox{that maximises } \sum_{e \in E^-(t)} \vec{x}_e f(e) \\ \mbox{subject to} & \forall e \in E : 0 \leq \vec{x}_e \leq 1 \\ & \forall v \in V \setminus \{s, t\} : \sum_{e \in E^+(v)} \vec{x}_e f(e) = \sum_{e \in E^-(v)} \vec{x}_e f(e) \\ & \forall d \in D : 0 \leq \sum_{e \in \{d(k): k \in K\} \cap E_K} \vec{x}_e \leq 1 \\ & \forall d_1, d_2 \in D : 0 \leq \sum_{e \in \{(d_1 \succ d_2)(Q): Q \in T\} \cup \{(d_2 \succ d_1)(Q): Q \in T\}) \cap E_I} \vec{x}_e \leq 1 \\ \end{array}$

2. Convert flow problem to LP

find \vec{x} that maximises $\sum_{e \in E^-(t)} \vec{x}_e$ subject to $\forall e \in E : 0 \le \vec{x}_e \le f(e)$ $\forall v \in V \setminus \{s, t\} : \sum_{e \in E^+(v)} \vec{x}_e = \sum_{e \in E^-(v)} \vec{x}_e$

4. Solve using e.g. Z3

find	x
that maximises	$S \sum_{e \in E^-(t)} \vec{x}_e f(e)$
subject to	$\forall e \in E : 0 \leq \vec{x}_e \leq 1$
	$\forall v \in V \setminus \{s,t\} : \sum_{e \in E^+(v)} \vec{x}_e f(e) = \sum_{e \in E^-(v)} \vec{x}_e f(e)$
	$\forall d \in D : 0 \leq \sum_{e \in \{d(k): k \in K\} \cap E_K} \vec{x}_e \leq 1$
	$\forall d_1, d_2 \in D: 0 \leq \sum_{e \in (\{(d_1 \triangleright d_2)(Q): Q \in T\} \cup \{(d_2 \triangleright d_1)(Q): Q \in T\}) \cap E_l} \vec{x}_e \leq 1$

Input using YAML program specifications

datatype	s:
A :	
	cizo. 1
	Size: i
	count: 1
в:	
	size: 1
_	Count: 1
C:	
	size: 1
	count: 1
dorri cos.	
devices:	
- d1	
- d2	
intercon	nects:
- 5007	co: d1
- 50ui	
	destination: d2
	bandwidth: 100
	bidirectional: true
algorith	mc.
argoriu	
k1:	
	in type: A
	out type: B
	implementations:
	denier di
	- device: di
	throughput: 5000
	- device: d2
	throughput: 50000000000
1-0 -	chiloughpue. Storoootootoo
KZ:	
	in_type: B
	out type: C
	implementations.
	derri en el di
	- device: di
	throughput: 10000
	- device: d2
	throughput: 10
	n n n n n n n n n n n n n n n n n n n
source:	A
sink: C	

Can we do this for traccc?

- Input: throughput of kernels running full beans on the device
- We do not have this data 🙁
- But we can compute it!

Computing throughput

Computing throughput

Computing parallelism

Slide for sawtooth enthusiasts

Kernel results

Kernel	BS	GS	Occ. (%)	Lat. (µs)	Thr. (Hz)
ccl_kernel	256	190.3	83.3	1052.1	1676.7
form_spacepoints	1024	104.4	66.7	76.9	16 482.4
count_grid_capacities	256	328.6	100.0	43.2	28 380.1
populate_grid	256	328.6	100.0	53.8	22786.1
fill_prefix_sum	32	2.0	33.3	87.4	5914812.4
count_doublets	64	642.7	66.7	626.4	2672.0
find_doublets	64	359.8	66.7	1589.7	1858.9
count_triplets	64	111 316.0	66.7	13 347.5	81.6
reduce_triplet_counts	64	359.8	66.7	20.1	144414.7
find_triplets	64	11731.2	66.7	4491.9	261.0
update_triplet_weights	64	15 291.9	66.7	104.6	10621.0
select_seeds	64	359.8	33.3	457.5	3404.8
<pre>estimate_track_params</pre>	64	593.3	66.7	64.7	27 829.3
<pre>make_barcode_sequence</pre>	64	267.4	66.7	4.5	845 489.4
apply_interaction	64		66.7	—	—
find_tracks	64	_	25.0		_
propagate	64		25.0		· <u> </u>
build_tracks	64	1577.4	66.7	652.6	2172.3
prune_tracks	64	492.0	66.7	254.5	8882.5
fit	64	492.0	16.7	28 1 39.4	44.3

CKF kernel results

Back to throughput

stephen@niflheim ~/Projects/lipstick \$ wc -l traccc.yaml 730 traccc.vaml stephen@niflheim ~/Projects/lipstick \$ poetry run lipstick traccc.yaml [12/13/24 14:11:23] **INFO** Welcome to Lipstick version 0.1.0 [12/13/24 14:11:23] INFO Reading task graph from traccc.yaml... [12/13/24 14:11:23] INFO Task graph MD5 sum is 0560d5efbec4ee23943c4eedbc457de3 [12/13/24 14:11:23] INFO Reifying task graph from model... [12/13/24 14:11:23] INFO Created model with **162** nodes and **241** edges [12/13/24 14:11:23] INFO Attempting to solve model... Problem is satisfiable! [12/13/24 14:11:23] INFO Maximum achievable throughput is 11.12 Hz [12/13/24 14:11:23] **INFO** stephen@niflheim ~/Projects/lipstick 💲 🗌

Differential results

