
Throughput Models of traccc
Stephen Nicholas Swatman
ACTS Parallelization Meeting
Friday, January 24th, 2024

Recap: Lipstick

● Presented earlier this year

● Optimistic throughput model for heterogeneous task graph applications

● How did it work?

1. Model problem as task graph

1. Model problem as task graph 2. Convert flow problem to LP

1. Model problem as task graph 2. Convert flow problem to LP

3. Add resource constraints

1. Model problem as task graph 2. Convert flow problem to LP

3. Add resource constraints4. Solve using e.g. Z3

Input using YAML program specifications
datatypes:
 A:

size: 1
count: 1

 B:
size: 1
count: 1

 C:
size: 1
count: 1

devices:
 - d1
 - d2
interconnects:
 - source: d1

destination: d2
bandwidth: 100
bidirectional: true

algorithms:
 k1:

in_type: A
out_type: B
implementations:

 - device: d1
 throughput: 5000
 - device: d2
 throughput: 500000000000
 k2:

in_type: B
out_type: C
implementations:

 - device: d1
 throughput: 10000
 - device: d2
 throughput: 10
source: A
sink: C

Can we do this for traccc?

● Input: throughput of kernels running full beans on the device

● We do not have this data 🙁
● But we can compute it!

Computing throughput

We can measure latency

Computing throughput

We can measure latency

We canʼt measure parallelism,
but we can model it

Computing parallelism

Accounting for tail effects

where

We know the number of
threads required

We can measure occupancy

Thread slots follow from
hardware specs

Slide for sawtooth enthusiasts

Kernel results

CKF kernel results

Back to throughput

Differential results

