

$gg \rightarrow ZH$ at NLO

Marco Vitti (Karlsruhe Institute of Technology, TTP and IAP) VH subgroup meeting: Plans for YR5 – 24.10.24

$gg \rightarrow ZH @$ NLO in QCD - Ingredients

Virtual corrections $(2 \rightarrow 2, \text{ two loops})$ - interference with LO

Real emission $(2 \rightarrow 3, \text{ one loop})$ - squared amplitudes

Complete NLO Predictions

[Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser - 2204.05225]

Virtual corrections

• pySecDec for $p_T < 200 \,\mathrm{GeV}$

HE exp for $p_T > 200 \,\mathrm{GeV}$

Real emission

GoSam & in-house C++ code

Virtual corrections

- ◆ pT exp for |*t*| < 4m_t²
 ◆ HE exp for |*t*| > 4m_t²

Real emission

- RECOLA2 [Denner, Lang, Uccirati 1711.07388]
- MadGraph5 [Alwall et al. 1405.0301]

Validation of predictions when same parameters are used

Once agreement is found, the "pT exp
 High-Energy exp" implementation should be adapted to inputs and recommendations form VH subgroup

Real Emission

Overall agreement for prediction w/o Z-radiated diagrams DONE

Agreement below 0.1% for real emisison in gg-channel

Better agreement for qg- and qq- channels

Comparison when Z-radiated diagrams are included TO BE COMPLETED Good agreement for qg- and qq- channels

Discrepancies in gg-channel (not affected by Z-radiation...)

High-Energy Tails – Z Radiation

 10^{1} LO, On-Shell NLO, On-Shell 10^{0} NLO, no Z-rad, On-Shell K-factor rapidly increasing for $M_{ZH} > 1 \,\mathrm{TeV}$ 10^{-1} $\frac{[{\rm A}_{2}]^{-2}}{10^{-3}}$ 10^{-2} Effect due to real-emission diagrams where the Z is radiated from an open fermion line 10^{-5} [Wang, Xu, Xu, Yang - 2107.08206] Not included in [Chen et al. - 2204.05225] 10^{-6} $^{10^{-7}}_{9.0}$ LO, On-Shell 8.0 NLO. On-Shell 7.0NLO, no Z-rad, On-Shell 6.0g Jeee K-factor 5.04.02.01.000000 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 200Dominant PDF suppressed $M_{ZH}[\text{GeV}]$

[Degrassi, Gröber, MV, Zhao - 2205.02769]

High-Energy Tails – pT Distributions

K-factor increasing for $p_{T,Z} > 600 \,\mathrm{GeV}$

Not very sensitive to pT cuts

[Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser - 2204.05225]

High-Energy Tails – pT Distributions

Very large NLO corrections for $p_{T,H} > 400 \, \text{GeV}$

Still K-factor of ~5 after pT cuts

[Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser - 2204.05225]

Virtual corrections

[Plot: Ramona]

pT+HE expansion vs pySecDec+HE exp

Overall agreement at % level

TODO: understand better deviations at low $|t|/4m_t^2$

Comparison at the level of IR-subtracted \mathcal{V}_{fin}

5

Top Mass Scheme Uncertainty

Envelope of deviations of MS schemes wrt OS result Same method already used for HH production [Baglio et al. - 1811.05692, 2003.03227]

Uncertainty sensitive to the binning of top-pair threshold peak

TTT 1.1 [CI TT]

Avoid overestimate of uncertainty

	Bin Width [GeV]	LO	NLO
	1	$64.01^{+15.6\%}_{-35.9\%}$	$118.6^{+17.2\%}_{-27.0\%}$
	5	$64.01^{+15.3\%}_{-35.6\%}$	$118.6^{+14.7\%}_{-24.9\%}$
	25	$64.01^{+14.0\%}_{-33.1\%}$	$118.6^{+10.9\%}_{-20.8\%}$
	100	$64.01^{+2.0\%}_{-25.3\%}$	$118.6^{+0.6\%}_{-13.7\%}$
	\sim	$64.01^{+0\%}_{-23.1\%}$	$118.6^{+0\%}_{-12.9\%}$

T 0

ATT 0

Top-mass uncertainty ~ scale uncertainty

Agreement with [Chen et al. - 2204.05225] for $M_{ZH}\!>\!400\,{
m GeV}$

(Predictions for different schemes available only in this region for both papers)

[Degrassi, Gröber, MV, Zhao - 2205.02769]

Status summary

Real and virtual corrections for both setups in general agreement

TODO

- Extend validation at the level of differential distributions
- **Numbers for inclusive** $gg \rightarrow ZH$
- Single-differential distributions (invariant mass, pT)

To be discussed

- Binning and top-mass-scheme uncertainties
- Possibility of multi-differential distributions?
- Better understanding of high-energy tails:
 - Include Z-radiated diagrams? Present predictions w/ and w/o Z-radiated?
 - Interplay between fiducial cuts and large K-factors

