

Diffraktív proton-proton ütközések: a CERN LHC CMS és TOTEM kíséretek új eredményei

Szanyi István

MATE Műszaki Intézet, KRC, Gyöngyös HUN-REN Wigner Fizikai Kutatóközpont, Budapest Kansasi Egyetem, Lawrence, USA

> 10. Femtoszkópia Nap Gyöngyös, 2024. október 29-30.

A világ legnagyobb részecskegyorsítója: az LHC

Hogyan is jutunk el a részecskékig?

az **elektron** és a **kvarkok** az anyag tovább már nem bontható, elemi építőkövei közé tartoznak (az eddigi ismereteink szerint)

Részecskék és antirészecskék

az anyagi részecskéknek vannak **antirészecske** párjaik

a **kvarkok** és **antikvarkok** az erős kölcsönhatás révén **összetett hadron részecskék**et alkotnak (színbezárás)

Részecskék a Compact Muon Solenoid (CMS) detekorban

6/19

Részecskefizikai esemény mérése a CMS detektorban

másodpercenkénti 40 millió "lefényképezett" eseményből (~TB/s) 1000 érdekes esemény (~MB/s) kerül csak mentésre (trigger)

Jetek (hadronzáporok) a CMS detektorban

TOTEM: nagyon kis szögben szóródott, ép protonok mérése

detektorlemezek

9/19

Kinematikai változók, koordináták

 \sqrt{s} : tömegközépponti energia

t: átadott négyesimpulzus-négyzet

 ξ : a részecske impulzusvesztési hányada

pszeudorapiditás: $\eta = -\ln \tan \theta/2$

Diffraktív események proton-proton ütközésekben

domináns **pomeroncsere** → **nagy rapiditásrés** (LRG), részecskék nélküli terület

"soft" pomeron a Regge elméletben: a vákuum kvantumszámaival rendelkező részecskék egész családja; energiával növekvő hadronikus keresztmetszeteket ad

"hard" (BFKL) pomeron a pQCD-ben: két kölcsönható gluon színtelen állapota

a pomeronfizika elméleti és kísérleti oldalról is népszerű és érdekes kutatási téma

BFKL pomeron

Central exclusive production (CEP) of charged pion pairs

nonresonant continuum production of charged pion pairs is studied by CMS and TOTEM experiments in pp collisions at \sqrt{s} = 13 TeV in the resonance-free region: $m_{\pi^+\pi^-} < 0.7$ GeV, $m_{\pi^+\pi^-} > 1.8$ GeV

Phys. Rev. D 109 (2024) 112013

Töltött pionpárok és ép protonok rekonstrukciója

Results, $d^3\sigma/dp_{1,T} dp_{2,T} d\phi$

studied variables: p_{1,T} and p_{2,T}, the transverse momenta of final state protons; φ, the azimuthal angle between the scattered protons; m, the invariant mass of the pion pair; max(t, u) squared four momentum of the virtual meson

triple differential cross sections: in ranges of $p_{1,T}$ and $p_{2,T}$, distributions of ϕ , m, and max(t, u)

a parabolic minimum in the distribution of φ is observed for the first time

the minimum can be interpreted as an effect due to rescattering (absorption) corrections

> Harland-Lang, Khoze, Ryskin, Eur. Phys. J. C 74 (2014) 2848

Dijet events with hard color-singlet exchange

15/19

CMS color-singlet exchange (CSE) dijet event fractions

the fraction of color-singlet exchange dijet events, f_{CSE} , is measured in bins of different variables eg. $\Delta\eta_{jj} = |\eta^{jet1} - \eta^{jet2}|$

there are theoretical (BFKL) calculations with different detailes that quite well agree with measurment

limited sample size, a measurement as a function of kinematic variables is not possible: the f_{CSE} is extracted using the entire sample of events

Single-diffractive (SD) dijet production

- various diffractive processes measured jointly by CMS and TOTEM in pp collisions
- first time observation of a parabolic minimum in the distribution of the azimuthal angle difference of the final state protons in central exclusive production;
- various physical parameters related to pomeron physics extracted/tuned
- good agreement between BFKL and jet-gap-jet measurements
- first measurement of hard diffraction with a measured intact proton at LHC

Thank you for your attention!