Study of the Dijet Invariant Mass in W + 2 jet events by the DØ Collaboration

Jadranka Sekaric for the **DØ Collaboration** (University of Kansas)

CERN-PH LHC Seminar 2011, July 19, CERN

How did it all begin ...

Measurement of the WW/WZ cross section in the lvjj final states

http://www-cdf.fnal.gov/physics/ewk/2010/WW WZ/index.html

Results from the CDF Experiment (I)

Significant excess of events in the dijet mass distribution at M_{JJ} ~145 GeV (3.2 σ)

- Excess modeled with a Gaussian with a width expected from the dijet mass resolution
- Efficiency from MC WH with $m_H@150 \text{ GeV} \rightarrow Ivbb$
- If a new particle X, with BR(X \rightarrow jj) = 1: $\sigma(pp\rightarrow WX) \approx 4 pb$

Results from the CDF Experiment (II)

Significant excess of events in the dijet mass distribution at M_{JJ} ~145 GeV (4.3 σ)

www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html

Do the DØ data show a similar excess at M_{JJ} ~145 GeV?

Same event selection as in the CDF analysis Detailed treatment of systematic uncertainties

- Fit SM processes to data
- \Rightarrow Is there an excess of events similar to that in CDF data?

• Include a model "a la CDF" for WX \rightarrow lvjj in the fit

 \Rightarrow How large excess do the DØ data support?

Cross checks with signal-injected data

The DØ Collaboration

The DØ Experiment (Fermilab, US)

The DØ Detector

 $W(\rightarrow I_V)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Electrons

- p_T ≥ 20 GeV, |η| ≤ 1.0
- Isolated in calorimeter/tracker
- Good EM shower shape
- Match to a track

Muons

- $p_T \ge 20 \text{ GeV}, |\eta| \le 1.0$
- Isolated in calorimeter/tracker
- Hits in muon system (3 layers)
- Match to a track

Global Selection

Missing $E_T (MET) \ge 25 \text{ GeV}, M_T(W \rightarrow I_V) \ge 30 \text{ GeV}$ $M_T(W \rightarrow I_V) < 200 \text{ GeV}$ (in the muon channel) Veto events with more than 1 charged lepton

 $W(\rightarrow I_V)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Jets

- Cone algorithm with radius R = 0.5
- Energy deposition in the calorimeter in transverse and longitudinal directions is consistent with hadronic jet
- At least two tracks originating from the primary interaction point
- Two jets with $p_T \ge 30$ GeV (we do not veto events with extra jets with $p_T < 30$ GeV)
- Jet $|\eta_J| < 2.5$, $|\Delta \eta_{JJ}| < 2.5$, $p_T(JJ) \ge 40$ GeV, $\Delta \varphi$ (leading jet, MET) > 0.4

 $W(\rightarrow I_V)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Jets

- Cone algorithm with radius R = 0.5
- Energy deposition in the calorimeter in transverse and longitudinal directions is consistent with hadronic jet
- At least two tracks originating from the primary interaction point
- Two jets with $p_T \ge 30 \text{ GeV}$ (we do not veto events with extra jets with $p_T < 30 \text{ GeV}$)
- Jet $|\eta_J| < 2.5$, $|\Delta \eta_{JJ}| < 2.5$, $p_T(JJ) \ge 40$ GeV, $\Delta \varphi$ (leading jet, MET) > 0.4

Standard Jet Energy Scale

Measured in photon+jet and dijet events (quark dominated) Correct the jet energy back to the particlelevel for:

- detector energy response
- out-of-cone showering
- additional pp interaction (pileup, ZB/MB)

 $W(\rightarrow I_V)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Jets

- Cone algorithm with radius R = 0.5
- Energy deposition in the calorimeter in transverse and longitudinal directions is consistent with hadronic jet
- At least two tracks originating from the primary interaction point
- Two jets with $p_T \ge 30 \text{ GeV}$ (we do not veto events with extra jets with $p_T < 30 \text{ GeV}$)
- Jet $|\eta_J| < 2.5$, $|\Delta \eta_{JJ}| < 2.5$, $p_T(JJ) \ge 40$ GeV, $\Delta \phi$ (leading jet, MET) > 0.4

Standard Jet Energy Scale

Measured in photon+jet and dijet events (quark dominated) Correct the jet energy back to the particlelevel for:

- detector energy response
- out-of-cone showering
- additional $p\overline{p}$ interaction (pileup, ZB/MB)

 $W(\rightarrow I_V)$ + 2 jets from 4.3 fb⁻¹ DØ data, single lepton and lepton + jets triggers

Jets

- Cone algorithm with radius R = 0.5
- Energy deposition in the calorimeter in transverse and longitudinal directions is consistent with hadronic jet
- At least two tracks originating from the primary interaction point
- Two jets with $p_T \ge 30 \text{ GeV}$ (we do not veto events with extra jets with $p_T < 30 \text{ GeV}$)
- Jet $|\eta_J| < 2.5$, $|\Delta \eta_{JJ}| < 2.5$, $p_T(JJ) \ge 40$ GeV, $\Delta \varphi$ (leading jet, MET) > 0.4

Additional Jet Energy Calibration (relative data/MC corrections)

Measured in Z+jet events (for MC: Alpgen) (gluon dominated) Correct p_T imbalance and energy resolution for:

- soft out-of-cone radiation
- different quark/gluon sample composition (applied to Alpgen W+jet sample)

Modeling of SM processes

Event Source	Generator	σ (SM) /	σ (WW)	= 12.4 pb	
WW	Pythia		1.0	NLO	q -
WZ ZZ	Pythia Pythia		$\begin{array}{c} 0.3 \\ 0.1 \end{array}$	NLO NLO	q.
W+light flavor jets W+heavy flavor jets Z+light flavor jets Z+heavy flavor jets	Alpgen Alpgen Alpgen Alpgen	+ Pythia	800 30 30 1	from FIT from FIT NNLO NNLO	q
Double-Top Single-Top	Alpgen Comphep	+ Pythia	$0.6 \\ 0.2$	NNLO NNLO	ā

Multijet Background

(jet misidentified as a lepton)

- Estimated from (multijet enriched) data Muon channel: Reverse muon isolation cuts Electron channel: Loose electron quality criteria
- Corrected for contributions already accounted for by MC
- Normalization: template fit of $M_T(W \rightarrow Iv)$

10000000

Modeling of SM processes

Event Source	Generator	σ(SM) /	σ (WW)	= 12.4 pb	
WW WZ ZZ	Pythia Pythia Pythia		$1.0 \\ 0.3 \\ 0.1$	NLO NLO NLO	9 —
W+light flavor jets W+heavy flavor jets Z+light flavor jets Z+heavy flavor jets	Alpgen Alpgen Alpgen Alpgen	+ Pythia	800 30 30 1	from FIT from FIT NNLO NNLO	q
Double-Top Single-Top	Alpgen Comphep	+ Pythia	$0.6 \\ 0.2$	NNLO NNLO	ā,

Standard MC Corrections

(to account for differences from data)

- Reconstruction and Identification efficiencies of leptons/jets
- Trigger selection
- Z boson p_T modeling

$$(V = W, Z)$$

- W+jets is the dominant background
 Important to understand/model properly
- Different generators, different predictions
- In analyses with looser jet p_T cuts (WH→lvbb) discrepancies of this type have been seen ⇒ data-driven corrections (+ uncertainties) to model ΔR_{JJ}, η_J, W p_T distributions

$$(V = W, Z)$$

- W+jets is the dominant background Important to understand/model properly
- Different generators, different predictions
- In analyses with looser jet p_T cuts (WH→lvbb) discrepancies of this type have been seen ⇒ data-driven corrections (+ uncertainties) to model ΔR_{JJ}, η_J, W p_T distributions
- In this analysis (higher jet p_T cuts reduce discrepancies)
 - \Rightarrow no data-driven corrections
 - 1. Include uncertainties due to modeling of Alpgen variables ΔR_{JJ} , η_J , W p_T

$$(V = W, Z)$$

- W+jets is the dominant background
 Important to understand/model properly
- Different generators, different predictions
- In analyses with looser jet p_T cuts (WH→lvbb) discrepancies of this type have been seen
 ⇒ data-driven corrections (+ uncertainties) to model ΔR_{JJ}, η_J, W p_T distributions
- In this analysis (higher jet p_T cuts reduce discrepancies)
 - \Rightarrow no data-driven corrections
 - 1. Include uncertainties due to modeling of Alpgen variables ΔR_{JJ} , η_J , W p_T

We do not apply these corrections when comparing to the CDF result

$$(V = W, Z)$$

- W+jets is the dominant background Important to understand/model properly
- Different generators, different predictions
- In analyses with looser jet p_T cuts (WH→lvbb) discrepancies of this type have been seen
 ⇒ data-driven corrections (+ uncertainties) to model ΔR_{JJ}, η_J, W p_T distributions

1. Include uncertainties due to modeling of Alpgen variables ΔR_{JJ} , η_J , W p_T

We perform a cross check with these corrections applied

2. Include uncertainties due to tuning of Alpgen parameters

- Parton-jet matching parameters (p_T , ΔR)
- Parton shower model and underlying event (tunes)
- Renormalization/factorization scales

<u>N</u>ormalization (flat) and/or <u>D</u>ifferential (shape) of the dijet mass distribution max. deviation in the shape/normalization of the dijet mass distribution after ±1σ parameter changes given in [%]

Source of systematic uncertainty	Diboson signal	$W{+}\mathrm{jets}$	$Z{+}\mathrm{jets}$	Top	Multijet	Nature	$\Delta \sigma \ (pb)$
Trigger/Lepton ID efficiency	± 5	± 5	± 5	± 5		Ν	
Trigger correction, muon channel	± 5	± 5	± 5	± 5		D	
Jet identification	± 1	± 1	± 2	± 1		N D	
Jet energy scale	± 10	± 5	± 7	± 5		N D	
Jet energy resolution	± 6	± 1	± 3	± 6		N D	
Jet vertex confirmation	± 3	± 3	± 4	± 1		N D	
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		Ν	
Cross section	± 7	± 6.3	± 6.3	± 10		N	
V + hf cross section		± 20	± 20			N	
Multijet normalization					± 20	N	
Multijet shape, electron channel					± 1	D	
Multijet shape, muon channel					± 10	D	
Diboson modeling	± 8					D	
Parton distribution function	± 1	± 5	± 4	± 3		D	
Unclustered Energy correction	$\pm < 1$	± 3	± 3	$\pm < 1$		D	
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$			D	
ALPGEN $W p_T$ corrections		$\pm < 1$				D	
ALPGEN correction Diboson bias	± 1	± 1	± 1	± 1		D	
Renormalization and factorization scales		± 1	± 1			D	
ALPGEN parton-jet matching parameters		± 1	± 1			D	
Rarton shower and Underlying event correction		± 2	± 2			D	

Correlated if common for electron and muon channels, but mutually independent

Study of the dijet mass distribution in the DØ data

Fit SM contributions to data \Rightarrow Is there an excess of events similar to that in CDF data?

Include a model "a la CDF" for WX \rightarrow lvjj in the fit \Rightarrow How large excess do the DØ data support?

Gaussian constraint on

systematic

• Best fit of all SM contributions to the data using the dijet mass distribution, minimizing Poisson χ^2 function (ratio of Poisson likelihoods+prior information on the systematic uncertainties)

- D: observed number of events
- $S(\theta_k)$: predicted number of signal events
- $B(\theta_k)$: predicted number of background events
- θ_k : number of s.d. systematic "k" has been pulled away from nominal
- SM contributions fluctuate within systematic uncertainties (constrained by Gaussian priors)
- Normalization for any process can be treated as a free parameter (Gaussian constraint removed from the sum)

The dijet mass distribution after fitting the SM contributions to the data (normalizations for dibosons and W+jets are free parameters)

		Electron channel	Muon channel
Without	Dibosons	$434~\pm~38$	$304~\pm~25$
	$W\!+\!{ m jets}$	5620 ± 500	$3850~\pm~290$
Alpgen	$Z\!+\!{ m jets}$	180 ± 42	$350~\pm~60$
Modeling	$t\bar{t} + { m single top}$	600 ± 69	363 ± 39
Corrections	Multijet	932 ± 230	151 ± 69
	Total predicted	7770 ± 170	5020 ± 130
	Data	7763	5026

The dijet mass distribution after fitting the SM contributions to the data (normalizations for dibosons and W+jets are free parameters)

		Electron channel	Muon channel
Without	Dibosons	$434~\pm~38$	$304~\pm~25$
	$W\!+\!{ m jets}$	5620 ± 500	3850 ± 290
Alpgen	$Z\!+\!\mathrm{jets}$	180 ± 42	$350~\pm~60$
Modeling	$tar{t} + ext{single top}$	$600~\pm~69$	$363~\pm~39$
Corrections	Multijet	932 ± 230	$151~\pm~69$
	Total predicted	7770 ± 170	5020 ± 130
	Data	7763	5026

The DØ data are consistent with the SM prediction

The dijet mass distribution after fitting the SM contributions to the data (normalizations for dibosons and W+jets are free parameters)

The DØ data are consistent with the SM prediction

Study of the dijet mass distribution in the DØ data

Fit SM contributions to data \Rightarrow Is there an excess of events similar to that in CDF data?

Include a model "a la CDF" for WX \rightarrow lvjj in the fit \Rightarrow How large excess do the DØ data support?

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→Ivbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→lvbb sample (m_H@150 GeV)
★ Assumption BR(X→jj) = 1

Systematic uncertainties (normalization and shape)

Luminosity, lepton identification, jet identification (3%)

Jet Energy Scale: shifting the mean of Gaussian by 1.5% and 3% change in rate Jet Resolution: changing a width by 3% and 0.7% change in rate

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{\text{excess}} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→Ivbb sample ($m_H@150$ GeV) ★ Assumption BR(X→jj) = 1

X Fit **SM contributions+WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

✗ Efficiency for WX estimated with WH→lvbb sample (m_H@150 GeV)
✗ Assumption BR(X→jj) = 1

X Fit **SM contributions+WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{\text{excess}} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

✗ Efficiency for WX estimated with WH→Ivbb sample (m_H@150 GeV)
✗ Assumption BR(X→jj) = 1

X Fit **SM contributions+WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

Fitted data is consistent with no excess

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→lvbb sample (m_H@150 GeV)
★ Assumption BR(X→jj) = 1

X Fit **SM contributions+WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

1. Measured cross section:

(normalizations for WW+WZ, W+jets, WX float)

$$\sigma(WX) \times B(X \rightarrow jj) = 0.82^{+0.83}_{-0.82} \text{ pb}$$

Fitted cross section consistent with zero!

× Gaussian distribution in dijet mass with a width σ_{excess} determined by the DØ experimental resolution

For $M_{JJ}^{excess} = 145 \text{ GeV}$ σ_W , M_W from WW \rightarrow Ivjj sample

$$\sigma_{excess} = \sigma_{W} \sqrt{\frac{M_{JJ}^{excess}}{M_{W}}} = 15.7 \, GeV$$

★ Efficiency for WX estimated with WH→lvbb sample (m_H@150 GeV)
★ Assumption BR(X→jj) = 1

X Fit **SM contributions+WX** to data

(normalizations for dibosons, W+jets, WX are free parameters)

1. Measured cross section: (normalizations for WW+WZ, W+jets, WX float)

$$\sigma(WX) \times B(X \rightarrow jj) = 0.82^{+0.83}_{-0.82} \text{ pb}$$

2. Measured cross section:

(normalizations for W+jets, WX float, a la CDF)

$$\sigma(WX) \times B(X \rightarrow jj) = 0.42^{+0.76}_{-0.42} \text{ pb}$$

Fitted cross sections consistent with zero!

X Poisson Negative Log-Likelihood Ratio, LLR (statistical test)

Test Signal+Background (S+B) and Background-only (B) hypotheses

$$LLR = -2ln\left(\frac{L(D;S+B,\theta_k)}{L(D;B,\theta_k)}\right) = \chi^2(D;S+B,\theta_k) - \chi^2(D;B,\theta_k)$$

D: observed # of ev.S: predicted # of signal ev.B: predicted # of bkg ev.

 \Rightarrow generate pseudo-experiments from Poisson fluctuations of S+B and B hypotheses allowing statistical and systematic fluctuations (θ_k , Gaussian distributed)

How the LLR probability distributions for each hypothesis compare to the observed LLR?

CL_s method (1- $CL_s = 1 - CL_{s+B}/CL_B$)

Cross section upper limit for which the 1- CL_s value is 0.95 (95% CL) (5% chance to get observed outcome if S+B hypothesis were true)

Setting the Limits on WX

 $LLR_{R} \pm 1$ s.d.

 $LLR_{B} \pm 2$ s.d.

····· LLR_B

LLR 80

95% C.L. Upper Limit (pb)

60

LLR for data,

DØ, 4.3 fb⁻¹

Setting the Limits on WX

Setting the Limits on WX

- Probability for S+B hypothesis to be true as a function of a cross section (for the CDF model of an excess at $M_{JJ} = 145$ GeV)
- Cross section of 4 pb excluded at 4.3σ

The DØ data are not consistent with the excess seen by CDF

Cross checks with signal-injected data

Signal Injection

If a resonance of ~4 pb is present would we be able to see it?

✗ Build the test data: "data + WX→Ivjj" (model at 145 GeV)
 ✗ Fit all *SM contributions* to test data using the dijet mass distribution
 ✗ Normalizations for dibosons and W+jets are free parameters

Without Alpgen Modeling Corrections

Signal Injection

If a resonance of ~4 pb is present would we be able to see it?

★ Build the test data: "data + WX→lvjj" (model at 145 GeV)
 ★ Fit all SM contributions+WX to test data using the dijet mass distribution
 ★ Normalizations for dibosons, W+jets and WX are free parameters

Without Alpgen Modeling Corrections

If a resonance of ~4 pb were present in our data, we would certainly see it

Without Alpgen Modeling Corrections

Summary & Conclusions

Search for the resonance @ $M_{JJ} = 145$ GeV in W+2 jet events using the same event selection

We studied extensively the dijet mass distribution

DØ data are consistent with the SM prediction

For an excess (resonance) at 145 GeV:

data exclude cross sections larger than 1.9 pb at 95% CL

- \square cross section of 4 pb excluded at 4.3 σ
- Image: result published in <u>PRL 107, 011804 (2011)</u>