Physics and technology allied against cancer

Presented By: Dr. Tataridou Eftychia

Department of Radiation Oncology : Theagenio anti Cancer hospital of north Greece

Physics and technology :

Combined Impact:

Integrates physics and AI for unprecedented accuracy.

Enables cutting -edge techniques like proton therapy, adaptive radiotherapy, and FLASH therapy.

How radiation interacts with tissues

low LET " Photons vs. Protons"

low LET vs high LET

High LET particles (e.g. carbon ions) create complex DNA damage

Linear Energy

EINEUT ENERY Higher LET particles cause more damage to cancer cells.

Useful for radioresistant tumors.

Precise Dose Calculation:

Ensures accurate dose delivery.

Physics-based algorithms conform dose to tumor shape, minimizing exposure to healthy tissue.

Beam Shaping and Modulation:

Modern physics allows for 3D dose shaping (IMRT, SBRT).

Allows us to sculpt the radiation dose to fit the tumor precisely.

Artificial Intelligence (AI) in Radiotherapy:

Optimizes treatment planning, automating tumor contouring and dose optimization.

> Enhances personalized treatment approaches by analyzing large datasets.

> > Supports real-time adaptive radiotherapy, adjusting based on tumor response.

AI in Treatment Planning **Radiotherapy**

Automates tumor contouring.

Optimizes dose calculations.

Saves time and increases accuracy.

AI-based models analyze large datasets to optimize dose calculations for individual patients.

Improves precision in dose delivery and reduces side effects.

AI for Predicting Outcomes:

Machine learning models predict how tumors will respond.

Personalizes treatment based on individual patient data.

AI in Real-Time Adjustments:

Adaptive radiotherapy: AI adjusts treatment based on daily imaging.

Ensures accurate delivery even with patient movement or tumor changes.

FLASH Therapy

MRI-Guided Linear Accelerator System

Cutting-Edge Techniques in Radiotherapy

Biology-Guided Radiotherapy (BgRT)

Proton Therapy

Proton FLASH Therapy

Synthetic CT from MRI

1. FLASH Therapy

Ultra-high dose rate delivery: Exceeds 40 Gy/s, significantly higher than conventional radiotherapy (~0.1 Gy/s).

Reduced normal tissue toxicity: Hypothesis of oxygen depletion at high dose rates leading to a protective effect on normal cells.

Short treatment times: Radiation delivered in milliseconds, offering potential for singlesession treatments.

Current status: Under preclinical and early clinical trials to validate its therapeutic index.

Real-time soft tissue imaging: Continuous MRI guidance allows for precise visualization of tumors and surrounding anatomy during radiation delivery.

2. MRI-Guided Linear Accelerator System

Adaptive radiotherapy capabilities: Facilitates on-thefly adjustment of treatment plans based on daily anatomical changes (e.g., tumor shrinkage, patient motion).

Integration of 1.5T MRI and linear accelerator: Achieves simultaneous imaging and treatment, improving accuracy in moving tumors.

Use cases: Particularly advantageous for abdominal, pelvic, and thoracic tumors where organ motion is a challenge.

3. Biology-Guided Radiotherapy (BgRT)

PET-guided real-time adaptation: Utilizes PET imaging to monitor metabolic activity of tumors, providing biological guidance for radiation targeting.• Tumor heterogeneity targeting: Radiotherapy delivered based on functional information (e.g., glucose metabolism), allowing for dose painting strategies.

Dynamic tumor response adaptation: Treatment modified in real-time based on tumor biological changes during radiation sessions.

Potential application: Suitable for radioresistant and heterogeneous tumors such as head and neck cancers or high-grade gliomas.

4. Proton Therapy

Bragg peak phenomenon: Protons deposit maximal energy at a specific depth, minimizing exit dose and sparing normal tissues beyond the tumor.

High precision dose escalation: Allows for higher doses to the tumor with reduced collateral damage to adjacent tissues, especially in pediatric and sensitive regions.

Optimal for deep-seated tumors: Frequently used for skull base tumors, pediatric cancers, and spinal tumors where precision is crucial.

Treatment planning: Requires complex 3D modeling for beam path planning, accounting for tissue heterogeneity and proton range uncertainties.

Ultra-high dose rate proton delivery: Combines proton therapy's precision with FLASH therapy's ultra-high dose rates (>40 Gy/s).

Sparing of normal tissues: Hypothesized to achieve a protective effect on normal tissues while maintaining high tumoricidal efficacy.

5. Proton FLASH Therapy

Potential to further reduce side effects: Early preclinical results show promise in reducing acute and chronic toxicity.

Ongoing research: Currently in early clinical trials, with focus on exploring therapeutic index improvements over conventional proton therapy.

6. Synthetic CT from MRI

MRI-based synthetic CT generation: Converts MRI scans into synthetic CT images for accurate dose calculations in MRI-only workflows.

Advantages in soft tissue contrast: MRI offers superior soft tissue contrast compared to CT, improving tumor delineation for treatment planning.

No ionizing radiation: Eliminates the need for additional CT scans, reducing cumulative radiation exposure during treatment planning.

Applications: Beneficial in head and neck, brain, and prostate cancers where soft tissue contrast is critical for accurate tumor targeting.

The FUTURE of radiotherapy

Hadrotherapy

Carbon ions with high LET: Induces complex DNA damage beyond repair in radioresistant tumors.

Increased relative biological effectiveness (RBE): Particularly suited for deep-seated or hard-to-treat cancers (e.g., sarcomas, pancreatic cancers).

Superior dose conformity: Enhanced precision in energy deposition at tumor sites.

AI-Driven Adaptive Radiotherapy:

- + :• Real-time tumor tracking: AI monitors tumor response and adjusts treatment plans dynamically during the course of therapy.
- + Enhanced personalization: Treatment evolves continuously with tumor size, position, and biological changes, improving outcomes.
- + Clinical decision support: AI-based algorithms enhance oncologist decision-making through datadriven insights.

Proton FLASH Therapy:.

- + Combines proton therapy with ultrahigh dose rates: Delivers doses at >40 Gy/s, minimizing normal tissue damage through the FLASH effect.
- + Sparing of normal tissues: Reduced normal tissue toxicity while maintaining therapeutic efficacy for radioresistant tumors.
- + Current status: Under clinical investigation with promising early preclinical and clinical data

Challenges and Limitations

Cost and Accessibility:

• High costs of equipment (e.g., proton centers, heavy ion facilities).

• Limited availability of advanced technologies globally.

Technological Barriers:

- Proton range uncertainties and adaptive technology challenges.
- MRI-metallic artifact challenges in MRI-guided RT.

Long-term Data:

• Need for more clinical trials and long-term outcomes data for new techniques like FLASH therapy.

Research and DevelopmentClinical Trials:

Ongoing trials in FLASH and proton FLASH therapy (e.g., Phase I/II) studies).

Heavy ion therapy trials focusing on radioresistant tumors.

AI in Radiotherapy:

AI-driven adaptive radiotherapy algorithms under development.

Exploring AI's role in predicting radiotoxicity and tumor response.

Radiogenomics:

+ Integrating genetic markers into treatment planning to personalize doses.

Physics & Technology with AI are driving advancements in precision.

Wrap-up and Acknowledgments

Cutting-edge technologies like FLASH, MRI-guided RT, and personalized therapies are shaping the future.

Continued research and collaboration are key to realizing these innovations.

Thank you

32.00