Hadron Therapy Symposium (Thessaloniki, 18. - 21.10.24.)

FLASH Radiation Therapy A Review on the Ultra-high Dose Rate Paradigm of Radiotherapy

A. Koutsostathis^{1*}, A. Adamopoulou¹, V. Rangos², C. Koumenis³, A. G. Georgakilas¹

¹ Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens ² School of Medicine, National Kapodistrian University of Athens ³ Department of Padiation Operating Department of Paperty Paralment School of Medicine, University of Paperty Paralment

³ Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania

DNA

FLASH Radiation Therapy: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy **Hadron Therapy Symposium** (Thessaloniki, 18. – 21.10.24.)

Contents

<u>Title</u>	<u>Slide</u>
What is FLASH Radiation Therapy?	3
A brief history of FLASH	4
First human patient	6
FAST-01: First human trial	7
Delivering Hadron FLASH-RT	9
Adapting RT systems for FLASH	10
VHEE: A novel technology for FLASH-RT	12
Potential mechanisms for the FLASH effect	13
Some big questions	15
References	16

What is FLASH Radiation Therapy?

FLASH Radiotherapy (FLASH-RT) is a new paradigm of radiation therapy, featuring ultra-high Dose rate (UHDR) irradiation of tumours with Dose rate (\dot{D}) of 40 Gy s⁻¹ or higher. The so-called FLASH effect can be defined as *the in vivo effect in which administration of radiation with UHDR can reduce the radiotoxicity in normal tissue, with little to no impact to the anti-tumour effect of the radiation* [1].

Fig. 1. Schematic of the FLASH-effect; the antitumour effect is maintained for both conventional (CONV) and FLASH-RT, whereas healthy tissue is spared with FLASH-RT, when compared to CONV-RT. The red coloured "knots" signify cell radiation damage.

Fig. 2. FLASH-RT significantly improves the potential for cancer treatment, by allowing for a larger therapeutic window, between the Tumour Control and Non-tumour Control Probability curves.

A brief history of... FLASH

DNA Damage

A brief history of... FLASH

First human patient [12]

Skin tumour (**CD30+ T-cell cutaneous lymphoma**) with d = 3.5 cm Irradiation with **5.6 MeV electron beam** with the **Oriatron eRT6 LINAC** [16] at **CHUV** (Lausanne University Hospital) $D_{PVT} = 15$ Gy ($D_{healthy} = 10$ Gy), t = 90 ms, n = 10 fractions ($T_{pulse} = 1 \mu s$, $f_{rep} = 100$ Hz), Dose rates: $\langle \dot{D}_{p} \rangle = 15$ MGy s⁻¹, but $\langle \dot{D} \rangle = 166$ Gy s⁻¹ (90% isodose at 1.3 cm depth) Pre- and post-irradiation **Dose distribution measurements with GafChromic films**

Fig. 5. Temporal evolution of the irradiated area before the treatment, at 3 weeks' time after the irradiation (peak of skin reaction) and at 5 months' time after the irradiation. The study appeared to have favourable results for the patient [12].

Fig. 6. Experimental setup of at the Oriatron eRT6 LINAC at CHUV [12, 16].

FLASH Radiation Therapy: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy **Hadron Therapy Symposium** (Thessaloniki, 18. – 21.10.24.)

FAST-01: First human trial [13]

Objectives:

- assessment of the clinical workflow feasibility of FLASH-RT for the palliative treatment of painful bone metastases
- evaluation of treatment related toxicities and adverse events (AEs)
- assessment of pain response at the treated sites

Technical implementation characteristics:

- treatment at Cincinati Children's/UC Health Proton Therapy Centre Varian ProBeam system with open-field transmission and PBS with 250 MeV protons.
- $D = 8 \text{ Gy}, n = 1 \text{ fx}, \dot{D} = 51 61 \text{ Gy s}^{-1}$

<u>Patient characteristics</u>: 10 patients (> 18 y old)
with 1-3 painful metastases in the extremities,
2 or more months of life expectancy and with
no prior RT to the intended lesion(s)

Fig. 7. Coronal CT through a lesion in the right distal femur. The radiation dose (blue line) as a function of depth of penetration into the body for FLASH delivery with a 250 MeV proton beam [13].

FAST-01: First human trial [13]

FLASH treatment workflow feasibility

- no FLASH-related technical issues/delays
- average time on the treatment bed was
 18.9 min per patient

Adverse effects:

- mostly skin-related (e.g. edema, erythema, skin hyperpigmentation, pruritus, etc.)
- mild and consistent with CONV-RT

Pain relief and post-treatment response:

- 33% had transient pain flares
- 67% reported pain relief
- 50% reported complete response (no pain)

confirmation of the workflow **feasibility** of **proton FLASH-RT** in **clinical settings**

Fig. 8. AEs attributed to FLASH treatment (up). Photographs of a single patient illustrating transient, mild hyperpigmentation the day of the treatment & at 3 different time points during follow-up (down) [13].

Delivering Hadron FLASH-RT [17-23]

FLASH Radiation Therapy: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy **Hadron Therapy Symposium** (Thessaloniki, 18. – 21.10.24.)

DNA

Damage

Adapting RT systems for FLASH [17-23]

Requirements for proton FLASH-RT

- higher proton-beam fluence (F_p)
- higher beam current (*I*_{beam})
- minimal beam losses and position misalignments
- D and D -independent (passive) detectors for online dosimetry

Cyclotrons for FLASH-RT [20-21,23]

- quasicontinuous cyclotron beams are suitable for sub-second Ddelivery
- Pencil Beam Scanning can be employed, being I_{beam}-independent
- passive double-scattering can also be employed; it requires very accurate adjustment of the scatterers and monitoring of activation-induced neutrons
- very fast range modulators

Fig. 10. Schematic of the proton FLASH-RT experimental setup at UPenn. An IBA Proteus Plus cyclotron produces a proton beam, which is then scattered by two Pb scatterers and collimated by a a custom brass collimator. The irradiation is guided by CT-defined geometry [20].

[19-22]

Adapting RT systems for FLASH [17-23]

Synchrotrons for FLASH-RT

[17,19,22]

- single-spill delivery of the therapeutic Dose
- custom beam-shaping elements
- **patient-specific range modulators** to allow for optimised irradiation of the tumour volume
- reduced distance of irradiated volumes from the beam extraction, to limit beam current losses

Fig 12. Design of a 3DRM for FLASH-irradiation of a 25 cm³ lung carcinoma with a 240 MeV amu⁻¹ $^{12}C^{4+}$ beam [17].

Fig. 11. Schematic of the beamline modifications to enable FLASH conditions, for the HITACHI synchrotron of the Texas MD Anderson Cancer Center [22].

Fig 13. *D* application to a 3DRM for a spherical target volume (r = 25 mm) with a 400 MeV amu⁻¹ ¹²C⁴⁺ beam [17].

VHEE: A novel technology for FLASH-RT [24-26] 12

- *T*_{VHEE} ~ 50 250 MeV
- increased depth penetration and indifference to medium inhomogeneities
- quadrupole-magnet focusing allows for **spread-out** *e* **peak** over the target region
- proposed VHEE LINACs to bunch at C- and X-band frequency (4 12 GHz) and gradient (50 - 100 MeV m⁻¹) ranges

Fig 14. Monte-Carlo simulations for the normalised Bragg curves of various RT modalities ($\sigma = 6.7$ mm, $n \sim 10^6$, $n_{\gamma} \sim 5 \times 10^5$) [24].

Fig 15. Monte-Carlo simulations for the normalised Bragg curves of 250 MeV *e*- of different types of beam focusing. [25].

Potential mechanisms for the FLASH effect 13

The Oxygen Depletion Hypothesis

[27-29]

Fig. 16. Potential contributions to the sparing effect of FLASH in healthy cells, from the depletion of O_2 and reduction in ROS levels.

Potential mechanisms for the FLASH effect 14

Circulation immune cell protection hypothesis

[1, 27, 30-31]

However... studies on heart and abdomen of mice exhibited unexpected results [30-31], and therefore further exploration and validation of this theory is necessary.

Cytokines' suppression

FLASH-RT has been observed to **reduce** the expression of **TGF-** β , which is a possible explanation of protective effect in healthy cells [32].

Fig. 17. FLASH-RT short irradiation time allows for less blood volume to be irradiated, thus resulting in increased sparing of immune cells when compared to CONV-RT.

Potential mechanisms for the FLASH effect 15

© Copyright Showeet.com

DNA

DAMAGE

Some Big Questions... [35-37]

- What are the underlying mechanisms for the FLASH effect?
- What are the conditions to induce FLASH upon tissue irradiation?
- Can the FLASH effect be induced in combined modality therapy?
- How can we generalise the results for clinical and pre-clinical studies?
 Question 1: FLASH effect robust and reproducible?
 Question 2: FLASH effect maintained with

Fig. 18. A summary of the temporal dosimetric characteristics of various published experimental data on in-vivo FLASH experiments [36].

Fig. 19. Answers to critical translational questions, posed at Loo B W, *et al.* (2024) *Semin Radiat Oncol* **34**:351-364, based on existing preclinical data [37].

References

- [1] Limoli C & Vozenin M (2023) Annu Rev Cancer Biol **7**:1-21
- [2] Dewey D & Boag J. (1959) *Nature* **183**(4673):1450-1451
- [3] Town C D (1967) Nature **215**(5103):847-848
- [4] Berry R J, et al. (1969) Br J Radiol 42(494):102-107
- [5] Hornsey S, et al. (1971) Int J Radiat Biol 19(5):479-483
- [6] Berry R J & Stedeford J B H. (1972) *Br J Radiol* **45**(531):171-177
- [7] Weiss H, et al. (1974) Int J Radiat Biol Related Stud Phys Chem Med **26**(1):17-29
- [8] Field S B & Bewley D K. (1974) *Int J Radiat Biol Related Stud Phys Chem Med* **26**(3):259-267
- [9] Michaels H B, *et al.* (1979) *Radiat Res* **76**(3):510-521
- [10] Lin B, et al. (2021) Front Oncol **11**:644400
- [11] Favaudon V, *et al.* (2014) *Sci Transl Med* **6**(245)
- [12] Bourhis J et al. (2019) Radiother Oncol 139:18-22
- [13] Mascia A E, *et al.* (2023) *JAMA Oncol* **9**(1):62-69
- [14] FLASH Radiotherapy with Mobetron (IntraOp):

https://intraop.com/flash-radiotherapy-electrons/

- (19.10.24.)
- [15] Daugherty E C, et al. (2024) Rad Oncol 19(34)
- [16] Jaccard M, et al. (2018) Med Phys 45(2):863-874
- [17] Weber U, et al. (2021) Med Phys 49:1974-1992
- [18] Lin Y, et al. (2022) Phys Med Biol 66(12)
- [19] Nesteruk K P & Psoroulas S (2021) Appl Sci 11:2170

- [20] Wei S, et al. (2022) Ther Radiol Oncol 6(16) [21] Diffenderfer E S, et al. (2020) Int J Radiation Oncol Biol Phys 106(2):440-448 [22] Titt U, et al. (2022) Med Phys 49:497-509 [23] Jolly S, et al. (2020) Phys Med 78:71-82 [24] Fischer J, et al. (2024) Phys J Plus 139(728) [25] Whitmore L, et al. (2021) Sci Rep 11(14013) [26] Whitmore L, et al. (2024) Sci Rep 14(11120) [27] Ma Y, et al. (2024) arXiv 2405.10219. [28] Lin B, et al. (2022) Front Oncol 12:995612 [29] Epp E R, et al. (1972) Radiat Res 52(2):324-332 [30] Venkatesulu B P, et al. (2019) Sci Rep 9(1):17180 [31] Zhang Q, et al. (2023) Cancers 15(8):2269 [32] Buonanno M, et al. (2019) Radiother Oncol **139**:51-55 [33] Spitz D R, et al. (2019) Radiother. Oncol. 139:23-27 [34] Labarbe R, et al. (2020) Radiother. Oncol. 153:303-310 [35] Loo B W, et al. (2024) Semin Radiat Oncol 34:351-364 [36] Vozenin M-C et al. (2024) Rev Mod Phys
- **96**(3):035002
- [37] Maity A and Koumenis C (2022) *Clin Cancer Res* **28**(17):3636-3638

Thank you for your attention!

Background image source: CERN Courier https://cerncourier.com/a/how-to-democratise-radiation-therapy/ (19.10.24.)

FLASH Radiation Therapy: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy **Hadron Therapy Symposium** (Thessaloniki, 18. – 21.10.24.)

DNA

DAMAGE