Hadron Therapy Symposium (Thessaloniki, 18. – 21.10.24.)

FLASH Radiation Therapy A Review on the Ultra-high Dose Rate Paradigm of Radiotherapy

A. Koutsostathis¹ ***, A. Adamopoulou**¹ **, V. Rangos**² **, C. Koumenis³ , A. G. Georgakilas**¹

¹Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens ² School of Medicine, National Kapodistrian University of Athens ³Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania

DNA

Contents ²

What is FLASH Radiation Therapy? ³

FLASH Radiotherapy (**FLASH-RT**) is a new paradigm of radiation therapy, featuring **ultra-high Dose rate** (UHDR) irradiation of tumours with Dose rate (D) of 40 Gy s⁻¹ **or higher**. The so-called **FLASH effect** can be defined as *the in vivo effect in which administration of radiation with UHDR can reduce the radiotoxicity in normal tissue, with little to no impact to the anti-tumour effect of the radiation* [1].

Fig. 1. Schematic of the FLASH-effect; the antitumour effect is maintained for both conventional (CONV) and FLASH-RT, whereas healthy tissue is spared with FLASH-RT, when compared to CONV-RT. The red coloured "knots" signify cell radiation damage.

Fig. 2. FLASH-RT significantly improves the potential for cancer treatment, by allowing for a larger therapeutic window, between the Tumour Control and Non-tumour Control Probability curves.

NTCP

A brief history of… FLASH ⁴

A brief history of… FLASH ⁵

DNA DAMAGE

First human patient [12] ⁶

Skin tumour (**CD30+ T-cell cutaneous lymphoma**) with *d* = 3.5 cm Irradiation with **5.6 MeV electron beam** with the **Oriatron eRT6 LINAC** [16] at **CHUV** (Lausanne University Hospital) D_{PVT} = 15 Gy (D_{healty} = 10 Gy), t = 90 ms, n = 10 fractions ($\mathcal{T}_{\text{pulse}}$ = 1 µs, f_{rep} = 100 Hz), Dose rates: $\langle \dot{D}_{p} \rangle$ = 15 MGy s⁻¹, but $\langle \dot{D} \rangle$ = 166 Gy s⁻¹ (90% isodose at 1.3 cm depth) Pre- and post-irradiation **Dose distribution measurements with GafChromic films**

Fig. 5. Temporal evolution of the irradiated area before the treatment, at 3 weeks' time after the irradiation (peak of skin reaction) and at 5 months' time after the irradiation. The study appeared to have favourable results for the patient [12].

Fig. 6. Experimental setup of at the Oriatron eRT6 LINAC at CHUV [12, 16].

FAST-01: First human trial [13] ⁷

Objectives:

- assessment of the **clinical workflow feasibility** of FLASH-RT for the palliative treatment of **painful bone metastases**
- evaluation of treatment related toxicities and **adverse events** (AEs)
- assessment of **pain response** at the treated sites

Technical implementation characteristics:

- treatment at **Cincinati Children's/UC Health Proton Therapy Centre Varian ProBeam system** with **open-field transmission** and **PBS** with **250 MeV protons**.
- $D = 8$ Gy, $n = 1$ fx, $\dot{D} = 51 61$ Gy s⁻¹

Patient characteristics: **10 patients** (> 18 y old) with **1-3 painful metastases in the extremities**, **2 or more months of life expectancy** and with **no prior RT to the intended lesion(s)**

Fig. 7. Coronal CT through a lesion in the right distal femur. The radiation dose (blue line) as a function of depth of penetration into the body for FLASH delivery with a 250 MeV proton beam [13].

FAST-01: First human trial [13]

FLASH treatment workflow feasibility

- no FLASH-related technical issues/delays
- average time on the treatment bed was **18.9 min per patient**

Adverse effects:

- **mostly skin-related** (e.g. edema, erythema, skin hyperpigmentation, pruritus, etc.)
- **mild and consistent with CONV-RT**

Pain relief and post-treatment response:

- **33%** had **transient pain flares**
- **67%** reported **pain relief**
- **50%** reported **complete response** (no pain)

confirmation of the workflow **feasibility** of **proton FLASH-RT** in **clinical settings**

Fig. 8. AEs attributed to FLASH treatment (up). Photographs of a single patient illustrating transient, mild hyperpigmentation the day of the treatment & at 3 different time points during follow-up (down) [13].

Delivering Hadron FLASH-RT [17-23]

Adapting RT systems for FLASH [17-23] **10** [17-23]

Requirements for proton FLASH-RT [19-22]

- **higher** proton-beam fluence (*F^p*)
- **higher** beam current (I_{beam})
- **minimal beam losses** and **position misalignments**
- *D* **and** *D*ሶ **-independent** (passive) **detectors** for **online dosimetry**

Cyclotrons for FLASH-RT [20-21,23]

- **quasicontinuous cyclotron beams** are suitable for **sub-second** *D***delivery**
- **Pencil Beam Scanning** can be employed, being *I*_{beam}-independent
- **passive double-scattering** can also be employed; it requires very **accurate adjustment of the scatterers** and **monitoring of activation-induced neutrons**
- **very fast range modulators**

Fig. 10. Schematic of the proton FLASH-RT experimental setup at UPenn. An IBA Proteus Plus cyclotron produces a proton beam, which is then scattered by two Pb scatterers and collimated by a a custom brass collimator. The irradiation is guided by CT-defined geometry [20].

Adapting RT systems for FLASH [17-23] **11** [17-23]

 45 mm

Synchrotrons for FLASH-RT [17,19,22]

- **single-spill delivery** of the therapeutic Dose
- **custom beam-shaping elements**
- **patient-specific range modulators** to allow for optimised irradiation of the tumour volume
- **reduced distance of irradiated volumes** from the beam extraction, to limit beam current losses

Fig 12. Design of a 3DRM for FLASH-irradiation of a 25 cm³ lung carcinoma with a

240 MeV amu-1 ¹²C4+ beam [17].

Fig 13. *D* application to a 3DRM for a spherical target volume (*r* = 25 mm) with a 400 MeV amu-1 ¹²C4+ beam [17].

Fig. 11. Schematic of the beamline modifications to enable FLASH conditions, for the HITACHI synchrotron of the Texas MD Anderson Cancer Center [22].

VHEE: A novel technology for FLASH-RT [24-26] 12 [24-26]

- \cdot T_{VHEF} \sim 50 250 MeV
- **increased depth** penetration and **indifference to medium inhomogeneities**
- quadrupole-magnet focusing allows for **spread-out** *e***- peak** over the target region
- proposed VHEE LINACs to bunch at **C- and X-band** frequency (**4 - 12 GHz**) and gradient (**50 - 100 MeV m-1**) ranges

Fig 14. Monte-Carlo simulations for the normalised Bragg curves of various RT modalities (*σ* = 6.7 mm, *n* ~ 10⁶, *n*_γ ~ 5 × 10⁵) [24].

Fig 15. Monte-Carlo simulations for the normalised Bragg curves of 250 MeV *e*- of different types of beam focusing. [25].

Potential mechanisms for the FLASH effect ¹³

The Oxygen Depletion Hypothesis [27-29]

Fig. 16. Potential contributions to the sparing effect of FLASH in healthy cells, from the depletion of $O₂$ and reduction in ROS levels.

Potential mechanisms for the FLASH effect ¹⁴

Circulation immune cell protection hypothesis [1, 27, 30-31]

However… studies on heart and abdomen of mice exhibited unexpected results [30-31], and therefore **further exploration and validation** of this theory is necessary.

FLASH-RT has been observed to **reduce** the expression of **TGF-β**, which is a possible explanation of protective effect in healthy cells [32].

Fig. 17. FLASH-RT short irradiation time allows for less blood volume to be irradiated, thus resulting in increased sparing of immune cells when compared to CONV-RT.

Potential mechanisms for the FLASH effect ¹⁵

© Copyright Showeet.com

Some Big Questions… ¹⁶ [35-37]

- What are the underlying mechanisms for the FLASH effect?
- What are the conditions to induce FLASH upon tissue irradiation?
- Can the FLASH effect be induced in combined modality therapy?
- How can we generalise the results for clinical and pre-clinical studies? Question 1: FLASH effect robust and reproducible?

Fig. 18. A summary of the temporal dosimetric characteristics of various published experimental data on in-vivo FLASH experiments [36].

Fig. 19. Answers to critical translational questions, posed at Loo B W, *et al*. (2024) *Semin Radiat Oncol* **34**:351-364, based on existing preclinical data [37].

References ¹⁷

- [1] Limoli C & Vozenin M (2023) *Annu Rev Cancer Biol* **7**:1-21
- [2] Dewey D & Boag J. (1959) *Nature* **183**(4673):1450- 1451
- [3] Town C D (1967) *Nature* **215**(5103):847-848
- [4] Berry R J, et al. (1969) *Br J Radiol* **42**(494):102-107
- [5] Hornsey S, *et al*. (1971) *Int J Radiat Biol* **19**(5):479-483
- [6] Berry R J & Stedeford J B H. (1972) *Br J Radiol* **45**(531):171-177
- [7] Weiss H, *et al*. (1974) *Int J Radiat Biol Related Stud Phys Chem Med* **26**(1):17-29
- [8] Field S B & Bewley D K. (1974*) Int J Radiat Biol Related Stud Phys Chem Med* **26**(3):259-267
- [9] Michaels H B, *et al*. (1979) *Radiat Res* **76**(3):510-521 [10] Lin B, *et al*. (2021) *Front Oncol* **11**:644400
- [11] Favaudon V, *et al.* (2014) *Sci Transl Med* **6**(245)
- [12] Bourhis J *et al*. (2019) *Radiother Oncol* **139**:18-22
- [13] Mascia A E, *et al*. (2023) *JAMA Oncol* **9**(1):62-69
- [14] FLASH Radiotherapy with Mobetron (IntraOp):

<https://intraop.com/flash-radiotherapy-electrons/>

- (19.10.24.)
- [15] Daugherty E C, *et al*. (2024) *Rad Oncol* **19**(34)
- [16] Jaccard M, *et al*. (2018) *Med Phys* **45**(2):863-874
- [17] Weber U, *et al*. (2021) *Med Phys* **49**:1974-1992
- [18] Lin Y, *et al*. (2022) *Phys Med Biol* **66**(12)
- [19] Nesteruk K P & Psoroulas S (2021) *Appl Sci* **11**:2170
- [20] Wei S, *et al*. (2022) *Ther Radiol Oncol* **6**(16) [21] Diffenderfer E S, *et al*. (2020) *Int J Radiation Oncol Biol Phys* **106**(2):440-448 [22] Titt U, *et al*. (2022) *Med Phys* **49**:497-509 [23] Jolly S, *et al*. (2020) *Phys Med* **78**:71-82 [24] Fischer J, *et al*. (2024) *Phys J Plus* **139**(728) [25] Whitmore L, *et al*. (2021) *Sci Rep* **11**(14013) [26] Whitmore L, *et al*. (2024) *Sci Rep* **14**(11120) [27] Ma Y, *et al*. (2024) arXiv 2405.10219. [28] Lin B, *et al*. (2022) *Front Oncol* **12**:995612 [29] Epp E R, *et al*. (1972) *Radiat Res* **52**(2):324-332 [30] Venkatesulu B P, *et al*. (2019) *Sci Rep* **9**(1):17180 [31] Zhang Q, *et al*. (2023) *Cancers* **15**(8):2269 [32] Buonanno M, *et al.* (2019) *Radiother Oncol* **139**:51-55 [33] Spitz D R, *et al*. (2019) *Radiother. Oncol.* **139**:23-27 [34] Labarbe R, *et al*. (2020) *Radiother. Oncol.* **153**:303-310 [35] Loo B W, *et al*. (2024) *Semin Radiat Oncol* **34**:351- 364 [36] Vozenin M-C *et al*. (2024) *Rev Mod Phys* **96**(3):035002 [37] Maity A and Koumenis C (2022) *Clin Cancer Res* **28**(17):3636-3638
- **FLASH Radiation Therapy**: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy **Hadron Therapy Symposium** (Thessaloniki, 18. – 21.10.24.)

Thank you for your attention!

Background image source: CERN Courier <https://cerncourier.com/a/how-to-democratise-radiation-therapy/> (19.10.24.)

FLASH Radiation Therapy: A Review on the Ultra-High Dose Rate Paradigm of Radiotherapy **Hadron Therapy Symposium** (Thessaloniki, 18. – 21.10.24.)

DNA DAMAGE