3 loops & 4 cuts towards N3LO RRR antenna functions

In collaboration with Thomas Gehrmann & Kay Schönwald

Based on JHEP 03 (2024) 159 & upcoming works

Milan Xmas meeting, 20/12/2024 🔰

Universität Zürich

Why precision?

- Precision physics as
 - test of the Standard model
 - gate to new physics
- High-Lumi upgrade of LHC :

 - needed: %-level accuracy:

GAULD for NEW SCIENTIST

theory and experiments must have comparable uncertainties

perturbation theory @ NNLO and often N3LO

Recipe for a theoretical prediction

Many ingredients

- Hard scattering

PDFs to describe the proton structure

Radiation and evolution to hadronic states

Looking @ QCD corrections:

 $d\sigma = d\sigma_{LO} + \alpha_S d\sigma_{NLO} + \alpha_S^2 d\sigma_{NNLO} + \alpha_S^3 d\sigma_{N3LO} + \dots$

Perturbative series in the strong coupling

- Beyond LO: contributions from diagrams with increasing loops and legs

$$d\sigma = d\sigma_{LO} + \alpha_S d\sigma_{NLO} + \alpha_S^2 d\sigma_{NNLO} + \alpha_S^3 d\sigma_{N3LO} + \dots$$

$$@ LO \qquad d\sigma_{LO} = \int_{d\Phi_m} d\sigma_{Born}$$

$$@ NLO \qquad d\sigma_{NLO} = \int_{d\Phi_{m+1}} d\sigma_{NLO}^R + \int_{d\Phi_m} d\sigma_{NLO}^V$$

$$@ NNLO \qquad d\sigma_{NNLO} = \int_{d\Phi_{m+2}} d\sigma_{NNLO}^{RR} + \int_{d\Phi_{m+1}} d\sigma_{NNLO}^{RV} + \int_{d\Phi_m} d\sigma_{NNLO}^V$$

$$@ N3LO \qquad d\sigma_{N3LO} = \int_{d\Phi_{m+3}} d\sigma_{N3LO}^{RRR} + \int_{d\Phi_{m+2}} d\sigma_{N3LO}^{RRV} + \int_{d\Phi_{m+1}} d\sigma_{N3LO}^{RVV} + \int_{d\Phi_m} d\sigma_{N3}^{VV}$$

Virtual correction Radiation of an extra gluon

KLN thm

- Separate pieces are IR-divergent:
 - **Explicit** poles in ϵ after loop integration
 - Implicit divergencies from real radiation

- [Kinoshita 1962; Lee, Nauenberg 1964]
- finiteness when summing over all unresolved configurations

unresolved : soft or collinear

How do we deal with these divergencies?

NLO example

• finite

NLO example

$$\mathrm{d}\sigma_{NLO} = \int_{\mathrm{d}\Phi_{m+1}}^{\cdot} \mathrm{d}$$

• finite

• finite

$$\int_{d\Phi_m} d\sigma_{NLO}^V + \int_{d\Phi_{m+1}} d\sigma_{NLO}^S$$

• finite

 $d\sigma_{NLO} = \int_{d\Phi_{m+1}} \left(d\sigma_{NLO}^R - d\sigma_N^S \right)$

• finite

- Add and subtract the same quantity $d\sigma^S$
 - Mimics singular behaviour in IR-limits of $d\sigma^V$, $d\sigma^R$
 - Makes the integrals individually finite
 - Simple enough to be analytically integrated over $\mathrm{d}\Phi$

$$S_{NLO} + \int_{d\Phi_m} \left[d\sigma_{NLO}^V + \int_1 d\sigma_{NLO}^S \right]$$

• finite

Annihilation into hadrons

Solved! :) [Chen, Jakubčík, Marcoli, Stagnitto '23]

Drell-Yan

Deep Inelastic Scattering

Antenna functions

Phase space integral

Reduction to master integrals

Workflow

DE & canonical form

Boundaries

Reverse Unitarity

[Anastasiou, Melnikov 2002]

Notice! $\mathrm{d}\Phi_n = \prod_{i=1}^n \frac{\mathrm{d}^d p_i}{(2\pi)^d} \delta^+ \left(p_i^2\right)$

$$I_{RRR} = \int \frac{d^{D} p_{1}}{(2\pi)^{D}} \int \frac{d^{D} p_{2}}{(2\pi)^{D}} \int \frac{d^{D}$$

phase space \rightarrow (cut) loops

phase space \rightarrow (cut) loops

 $-2\pi i \delta^{+}(p_{i}^{+}) = \frac{1}{p_{i}^{2} + p_{i}^{2}}$

Diagrammatically

 $\int d\Phi_4(2\pi)^D \mathcal{S}(P+q-\Sigma_{i=1}^4) \prod_{j=1}^{4} \frac{1}{D_j^{a_j}}$

$$\frac{1}{i0^+} - \frac{1}{p_i^2 - i0^+} = \frac{1}{[p_i^2]_{cut}}$$

[Chetyrkin, Tkachov '81; Laporta 2000]

This DIS (squared) amplitude contains a lot of integrals $\{I_i\}$ \rightarrow how to make things better?

Reduction to Master integrals Reduction into a basis of **linearly independent master integrals** $\{g_j\} \subset \{I_j\}$

modulo identities:

- Integration By Parts
- Lorentz Invariance
- symmetry relations

DE for Feynman integrals

Derivative of MI with respect to external invariants

 $\partial_z g_i = \sum a_{ij} I_j$

Obtain a system of first order DE for the MI!

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

How to solve a differential equation:

- **Generic solution**
- **Boundary condition**

Boundary Conditions

- Consistency conditions
 - Finding relations between boundaries
- Evaluation in some kinematic limit
 - Fix the remaining ones

Rewrite the DE in canonical form [Henn 2013]: solution in terms of iterated integrals

$$\overrightarrow{g}_{z}\overrightarrow{g} = \epsilon A^{\star}(z) \cdot \overrightarrow{g}$$

Representative contributions at order α_s^3

RRR layer Physical 4-cuts of the 3 loop inclusive DIS amplitude

$$I_{RRR} = \int \frac{d^{D} p_{1}}{(2\pi)^{D}} \int \frac{d^{D} p_{2}}{(2\pi)^{D}} \int \frac{d^{D} p_{3}}{(2\pi)^{D}}$$

 $\frac{1}{p_{1}^{2}} \frac{1}{[p_{1}^{2}]_{cut}} \frac{1}{[p_{2}^{2}]_{cut}} \frac{1}{[p_{3}^{2}]_{cut}} \frac{1}{[p_{4}^{2}]_{cut}} \prod_{j} \frac{1}{D_{j}^{\alpha_{j}}}$

- 65 families
- Small number of MI for each family \rightarrow 4 cuts
- Total: 1620 MIs (No symmetries between families included)

Get to know the RRR families

Strategy:

- DE matrix M is a function of $M(z, \epsilon)$ \Rightarrow playground for automatic tools! eg LIBRA [Lee 2020]
- Analysis of their parametric representation to simplify the DE & get to a canonical form [Henn 2013]

Getting to a Canonical Basis (1): Balancing acts

For each family obeying a differential equation with associated matrix $M(z, \epsilon)$

- Build elementary transformations via graphical interface
 - Change pole order and eigenvalues of residue matrix around poles

Getting to a Canonical Basis (2): Strategy

Strategy for multi loop calculations: exploit block triangular structure

- Not acting on the full matrix at once

Getting to a Canonical Basis (3): good candidates

- Baikov representation

$$I = \int \left(\prod_{i=1}^{\ell} d^{d}k_{i} \right) \frac{1}{z_{1}^{\nu_{1}} \cdots z_{n}^{\nu_{n}}} = K \int dz_{1} \cdots dz_{n} B(\mathbf{z})^{\gamma} \frac{1}{z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}}$$
Numerator Ansatz $N(\vec{z})$
Check candidates with constant leading singularity with DLogBasis
Keep only the linearly independent candidates for a new basis
$$\int dz_{1} \dots dz_{n} B^{\gamma} \frac{N(\vec{z})}{z_{1}^{\alpha_{1}} \dots z_{n}^{\alpha_{n}}} \Big|$$
cut condition

- N

$$\begin{aligned} & \prod_{i=1}^{\ell} d^{d}k_{i} \\ & \sum_{i=1}^{\ell} d^{d}k_{i} \\ & \sum_{i=1}^{\nu_{1}} \cdots z_{n}^{\nu_{n}} = K \int dz_{1} \cdots dz_{n} B(\mathbf{z})^{\gamma} \frac{1}{z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}} \\ & \text{Ansatz } N(\vec{z}) \\ & \text{[Wasser (2020)]} \\ & \text{didates with constant leading singularity with DLogBasis} \\ & \text{the linearly independent candidates for a new basis} \\ & \int dz_{1} \dots dz_{n} B^{\gamma} \frac{N(\vec{z})}{z_{1}^{\alpha_{1}} \dots z_{n}^{\alpha_{n}}} \\ & \text{cut condition} \end{aligned}$$

• Sectors with higher number of propagators (top sector (TS), Next-to-TS, NNTS)

N3LO Results

Canonical DE for all the RRR families \checkmark We can find a generic solution

- Numerical evaluation with AMFlow @ 200 digits & PSLQ
- Constraints from symmetry relations between the families
- Calculation of the amplitude \rightarrow which boundaries are actually needed

- Finish calculation for all layers
 - Ultimate goal: obtaining the full set of integrated initial-final antennae

