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Five-point scattering amplitudes with internal massive propagators

¢ Massive propagators increase substantially the complexity of the computation

s%ru&%u@

C_ Numerical Evaluation

T —=

&9 Processes with internal massive propagators not on the same level of massless ones

¢y First results for processes involving massive propagators appeared recently:

One-loop helicity amplitudes for pp — #7j up to O(€?)  [BadgerMB,ChaubeyMarzucca,Sarandrea *22]

Two-loop Mis for leading colour to pp — ﬁj [Badger, MB, Giraudo, Zoia 2404.12325]
. — . . Feb Cord , Fi iredo, K :
Two-loop Mls for leading colour pp — tfH with a light-quark loop reores Page, Roina 23]

One-loop QCD correction to gg — t7H to O(e?) [Buccioni, Kreer, Liu, Tancredi 23]



Five-point scattering amplitudes with internal massive propagators
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Five-point scattering amplitudes: NO internal massive propagators

Canonical DEQs:

dge(X;e) =€ Y A;dlog Wi(X) - Gr(Xse€)

?em&agum Funckions:

[Gehrmann, Henn, Lo Presti; Chicherin,
Sotnikov; Abreu, Chicherin, Ita, Page, _ _ _ _ ] _
Sotnikov, Tschernow, Zoia] Mis expressed in terms of algebraically independent basis of special functions

Algorithmic’

Q Control over special functions relations: simplifications at amplitude level

0 Efficient and stable numerical evaluation: Phenomenology applications!



Five-point scattering amplitudes with internal massive propagators

How can we improve the current methods?

First Path:
Construction of a over-complete basis of special functions

Current implementation for ttj
See Colomba’s Tall!

Simplifications at amplitude level

More efficient method for numerical evaluation
Picture generated with ChatGPT

Second. Paklh:

Construction of canonical DEQs for the elliptic topology

First step towards extension of pentagon functions method to the elliptic case



Two-Loop Planar Integral Topologies for
Leading Colour ttj

Currenk Ampt&%ud@; Imptemev\%aﬁam

[Badger,MB,Chaubey,Marzucca,Sarandrea '22] [Badger,MB,Chaubey,Marzucca 2210.17477]
[Badger, MB, Giraudo, Zoia 2404.12325] [Badger, MB, Brancaccio, Hartanto, Zoia 2412.13876]



Two-Loop Planar Integral Topologies for Leading Colour (LC) tij

[Badger, MB, Chaubey,
Marzucca 2210.17477]

¥ Mls 109 Mlis 121 Mlis

[Badger, MB, Giraudo, Zoia 2404.12325]

Canonical basis v Canonical basis v/ Canonical basis X

Alphabet v Alphabet v Elliptic Sector

Nesked square-
rooks



Differential Equations Structure
CGreneral Structure Dis:

dgr(X;e) = Qp(X;e€) - gr(X;e€)

Canomnical DEs PB, PB,- e-polynomial DEs  PBy
Qp(X;e) = Z €" Q%k)
dgr (X €) :eZAidlogWi(X)-g'F(X;e) —0
(k) (F) (F)
ZA dlog W;(X +ZB,”%

0 X = {du’ dy3; d3y, d45,d15,mt2}, dij = p; * Dj
€9 Wi(X) algebraic functions of X called letters

0 a)j(X) Linearly independent non-logarithmic one-forms



Construction of Special Functions

[Gehrmann, Henn, Lo Presti; Chicherin,

Q Extension of the Pentagon Functions method in the polylogarithmic case Sotnikov; Abreu, Chicherin, Ita, Page,

Sotnikov, Tschernow, Zoia]



Construction of Special Functions

[Gehrmann, Henn, Lo Presti; Chicherin,

Q Extension of the Pentagon Functions method in the polylogarithmic case Sotnikov; Abreu, Chicherin, Ita, Page,

Sotnikov, Tschernow, Zoia]

Q Designed to achieve the following goals:
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Construction of Special Functions
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&9 Applicability Conditions:

Connection matrix e-polynomial. Expressed in terms of dlogs and linearly independent non-
polylogarithmic one-forms
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Construction of Special Functions

[Gehrmann, Henn, Lo Presti; Chicherin,
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Construction of Special Functions

[Gehrmann, Henn, Lo Presti; Chicherin,

6 Extension of the Pentagon Functions method in the polylogarithmic case Sotnikov; Abreu, Chicherin, Ita, Page,

Sotnikov, Tschernow, Zoia]

Q Designed to achieve the following goals:

—

~__

More efficient

Simplification of finite )/
\humerical evaluation

( Amaivﬁf: subtraction of\/
remainder

UV/IR Poi.es

S 7

&9 Applicability Conditions:

Connection matrix e-polynomial. Expressed in terms of dlogs and linearly independent non-
polylogarithmic one-forms

Numerical values for the Mls to check relations and establish vanishing conditions

Non-canonical Mls non-zero only at the highest order in € needed for the amplitude
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Two-Loop Planar Integral Topologies for
Leading Colour ttj

Canonical DEQs for ELL&PR{:‘ Tapatugv

[MB, Dlapa, Zoia 25XX.XXXXX]



Nested Square root sector

a DEs in ¢-factorised form by means of the rotation

ViE

2 @ 3Mis: Fyp= {IPBBJS»IPBB,19JPBB,20}
i (PBB),[ll],O,O,O
Ipgpas =€ trs Iy 1711101 > 00 0 _
3 TpB 10 = € das [fi]?l?l),,f,,f:g,l tr(%}%(h — Py — pg)m%)} , dZyo1p = (0 X Y) + O(e) | - Za21B + (sub-sectors)
4 (PB5).000 | \0 Y X _
IPBB,2O =& dgs [1,1,1,1,1,1,0,1 _tr(lﬁg(% _Pz _ﬁg)}%%)} 3
4 Q Choice of the numerators made in order to cancel potential singularities

0 0 \
A/ T+ O . (
das 19
N

Q /Ny nested square roots as contain tr;

)

) a DEs with nested square roots cannot be handled by Diffexp

o O =
—_— O

a For the numerical evaluation we use the basis .7 ;55

/:

1

_d%S tr% —A4rory =

- 2d937r3 trs
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Elliptic sector

6 Picard-Fuchs operator

Li MaxCut [IPBBa’i]e:O =0 ,

T35:r37:2andr36:3

Mils basis:

_ 4 2 (PBB),0,0,0
IpBp,3s =€ dis(dia+mi) 1 1 011101 5

IpBp,36 =€ \/ (dis — ds4)? — 2dzgmi I 1(?,30?1),’? Vo [2k1 - p1]

A R

PB
Ippy,sr =€ (—1+2¢)dss 15,1,0?1),’?,’?,’8,1 2k - pa]

DEs are quadratic in €. We use this basis for numerical evaluation

* + € % € * %
dZs015 = x + € % £ * * - 3218 + (sub-sectors)
(1 —2e)(x+ex%) (1 —2e)e* *+ex

a Operators L;s, L5, are second order irreducible

Q Solution to L5 involves elliptic integrals of the first kind

0 Solution to L;- involves elliptic integrals of the first kind
and derivatives
0 Operators L, is third order factorisable into the
product of a second- and a first-order operator.

16



Elliptic sector

2 Q Mls basis:

4 2 (PBB),0,0,0
IPB3735 — ¢ d15 (d12 _|_ mt) 117170717171707

5 A Q DEs are quadratic in €. We use this basis for numerical evaluation
* + € % € * %
dZs015 = x + € % £ * * - 3218 + (sub-sectors)
(1 —2e)(x+ex%) (1 —2e)e* *+ex
. . . . €3 2
6 Elliptic curve from Maximal Cut 0 Periods of the elliptic curve ~ , _ 2 / dzs _ 4K (K) |
TJes Y 7T\/(€3—€1)(€4—62)
[ dz —8K(1 — k?)
dzg = 42/ i :
MaxCut [J] ‘gzooc /dlog (27, 29)] v e U ez —er)(es —e9)
P(29)
€1 — —mf,
_ 2 902 2 2dyodys(dgs — dis) — (d3s 4 diy — 2diadsa)mi + dsa Vo 2 _ (e3 — e2)(es —e1)
P(Zg) — (Zg + mt)(ZQ 3mt)(73() + P1 z9 + Po 29) eo =4 det G(pa. p1 1 ps) K (63 — 61)(64 — 62)
€3 — 62’\/g_>_\/57
es = 3m3,
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Building the Basis of Mls

&9 Canonical Basis greatly improves effectiveness of DEQs for Feynman Integrals

&9 The construction of Canonical Bases is in general a hard problem

| EZF?S&LOM [Prausa ’17]

P ruchsia [Gituliar,Magerya '17]

INITIAL [Dlapa,Henn,Yan '20]
Libra [Lee '21]

@ Canonical DEs are studied also in the elliptic case ~ ["reesvio Wenzier 29
[Gorges, Nega, Tancredi, Wagner '23]

&9 Given the complexity of the kinematics previous approaches are difficult to apply

18



Building the Basis of Mls
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Building the Basis of Mls

Q Application of the procedure [Gérges, Nega, Tancredi, Wagner ’23]

6 We start by looking at the DEQs in the top mass
SE@.F» ©: We study the homogeneous DEQs at ¢ = ()

Choose of basis: Decoupling of elliptic integrals

* * 0 0
A1|€:0 = |*x x 0] = B 0
*x * 0 * * 0

g&@_[p 2. We rotate the basis using the split in the previous

SE@_F, 1. Compute fundamental matrix of solutions at ¢ = 0 point to reach an ¢ triangular form

0 0 0 x Kk ok
We split it into its nilpotent and semi-simple parts As=10 0 0| +elx * «
W = LDU, Wy = LD. W, =U, * x 0 x *x %

S&QP 5 We integrate out the €’ terms in the whole matrix

WSS — 1 Iy o — e , WU_ — ¢1
(@% R gy g 0 1

S&QF’ 4. We iterate the procedure for the other variables



Building the Basis of Mls

D-Logarithmic case: rotation to canonical basis involves only
algebraic functions of the kinematic invariant

Elliptic case: we need to introduce functions that can be
writben as tompte%e éﬁip&ﬂ inteqrals

2 [ dag 1K (k) . (22, e)
wl _— — —_— = 3 1

T o Gl — _(62 — 61

—dmAy, . ...
> Y 77\/(63 _‘ 61)(6{1\‘— 62) T )\/(33 — el)(e4 — 32) TV

New analytic structure: Need to understand relations among these new set of functions

Numerical Evaluation: Currently not on the same level of the logarithmic case...
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Analytic Structure of Canonical DEQs

Symmaﬁrms o»f Connection Mabrix: First step towards classification of relations for special functions

Z, charqe: entries of connection matrix have charge under sign flip of all square roots, except trs, i.e. they are either

odd or even
VIV < /N _,
. . . S Wi, — Wn_,
tr; charge: entries of connection matrix form doublets under sign flip of trs
a22 < a33,

/ /
Ly21B19 < Ly21B.20 ;
_|_ _

G +— Gy,

Etiip&w grading: entries of connection matrix depend on elliptic functions 1, Gy, Gao, G; , Gy

By assigning a grade +1 to those objects, all the quantities in the connection matrix
have uniform grade from -2 to +2

Final form of DEQs: dZ = Z A;w; - L Well defined transformation rules w.r.t previous automorphisms
(

Closed one-forms w; written in terms of dlogs if possible
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Summary

a We completed the computation of two-loop planar integral topologies for pp — ttj at leading colour

6 Mis computation for two-loop planar topology represents the first ingredient for a NNLO QCD corrections to tt]

a Canonical DEQs also for the Topology involving elliptic integrals

Outlook

0 Simplification at amplitude level including canonical Mls for elliptic Topology
6 Extension of Pentagon Functions method to elliptic case

6 Efficient numerical evaluation strategy for the elliptic case
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