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1 The problem of subtracting IR singularities at NLO is solved. But what does 
“solved” means?

We can take papers on Catani-Seymour and FKS subtractions and find 
general procedures to cancel IR poles at NLO   

These formulas are transparent and can be used to cancel  and 
 poles explicitly 

𝒪(ϵ−2)
𝒪(ϵ−1)

1.1

1.2

These formulas, at least in principle, can be applied to compute NLO 
cross sections of every process at LHC

1.3

2 Question: Do we have the same kind of generality at NNLO as well? 
  Answer: NO

Numerous collaborations are actively working on this challenge (highly 
topical issue)   

Currently, the community knows how to compute NNLO corrections to an 
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These formulas, at least in principle, can be applied to compute NLO 
cross sections of every process at LHC

1.3

2 Question: Do we have the same kind of generality at NNLO as well? 
  Answer: NO

Numerous collaborations are actively working on this challenge (highly 
topical issue)   

Currently, the community knows how to compute NNLO corrections to an 
arbitrary process with a colorless initial state 

2.1

2.2

Remarkable calculations have been performed, for instance, the NNLO 
corrections to the process , but the big picture is still 
missing

pp → X + 3 Jets
2.3

3 Even though the problem was solved in a general way at NLO more than two 
decades ago, there are reasons why the solution is still lacking at NNLO

At NNLO, we face the plague of overlapping singularities, which implies 
to partition and sector the phase space

3.1
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pp → X + 3 Jets
2.3

3 Even though the problem was solved in a general way at NLO more than two 
decades ago, there are reasons why the solution is still lacking at NNLO

At NNLO, we face the plague of overlapping singularities, which implies 
to partition and sector the phase space

Sectoring the phase space allows us to perform the integrals but, at the 
same time, smashes the physics transparency of the calculation

3.1

3.2

4 We have to identify the building blocks of the class of QCD processes 
. A good starting point is the process  (see 

[2310.17598])
pp → X + N Jets 𝒜0 : qq̄ → X + N g

From the subtraction point of view, it is the most complicated channel

From a combinatorial perspective, it is the simplest channel, as it is 
symmetric in both the initial and final states

4.1

4.2

⟨Δ(𝔪𝔫) Fab
LM[ . . . |𝔪, 𝔫]⟩
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Sector Decomposition

θ(a)

θ(b)
θ(d)θ(c)

ηi𝔪

ηi𝔫

θ(a) = Θ(ηi𝔫 < ηi𝔪/2)
θ(c) = Θ(ηi𝔪 < ηi𝔫/2)

θ(b) = Θ(ηi𝔪/2 < ηi𝔫/2 < ηi𝔪)
θ(d) = Θ(ηi𝔫/2 < ηi𝔪/2 < ηi𝔫)

[Czakon ’10]

ηij = (1 − cos θij)/2

Angular  Ordering
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4

∑
i=1

⟨S𝔪𝔫S𝔫 Ωi Δ(𝔪𝔫)Fab
LM[ . . . |𝔪, 𝔫]⟩

In principle, this formula 
can be applied to any 
process at the LHC.   

In practice, identifying 
structures that can be 
combined with the VV 
and RV contributions 

becomes nearly 
impossible, rendering 
the calculation heavily 

process-dependent.
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IS(ϵ) IV(ϵ)+ = 𝒪(ϵ0)
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2

I2
T ⋅ F𝒜0
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2 (IS IV + IV IS) ⋅ F𝒜0
LM⟩ + ⋯

These operators also describe the NNLO
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⟨Δ(i) Fgq
LM[{g}N, q]⟩

Damping Factors
They select the final-state parton 
that is potentially unresolved   

= ⟨Δ(𝔪)(Fgq
LM[{g}N−1, q |𝔪𝔤] + Fgq

LM[{g}N |𝔪𝔮])⟩
Rename the Damping Factors

Two contributions identified 
- Unresolved gluon 
- Unresolved quark
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i∈ℋ
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i∈ℋ
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Damping Factors
They select the final-state parton 
that is potentially unresolved   
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- The pole of  vanishes 
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i∈ℋ
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i∈ℋ

⟨Ci𝔪 Δ(𝔪)Fℬ1
LM [𝔪𝔮] ∼ ⟨ Γq→gq

ϵ
⋅ Fℬ0

LM ⟩

IC(ϵ)
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= ⟨Fgq
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i∈ℋf

⟨Δ(i) Fgq
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Damping Factors
They select the final-state parton 
that is potentially unresolved   

= ⟨Δ(𝔪)(Fgq
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Rename the Damping Factors

Two contributions identified 
- Unresolved gluon 
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11
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symmetric in both the initial and final states

For NLO and NNLO corrections, we add only gluons4.3

6 We add the corrections proportional to  to the processes  and nf 𝒜0 ℬ0

We complete β0

We can see how the final-state gluon anomalous dimension arises 

5.1

5.2

We complete the operator  for the processes  and IT 𝒜0 ℬ05.3

5 Now we want to break the initial- and final-state symmetry of process . Thus 
we consider 

𝒜0
ℬ0 : gq → X + (N − 1)g + q

It contains all the IR divergences of the process 𝒜0

From a combinatorial perspective, it is more complex than 𝒜0

5.1

5.2

We can see how the final-state quark anomalous dimension arises 5.3

7
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6 We add the corrections proportional to  to the processes  and nf 𝒜0 ℬ0

We complete β0

We can see how the final-state gluon anomalous dimension arises 

5.1

5.2

We complete the operator  for the processes  and IT 𝒜0 ℬ05.3

From a combinatorial perspective, it is more complex than 𝒜05.2

We can see how the final-state quark anomalous dimension arises 5.3

7 At this point, generalizing the calculation for  becomes merely 
a matter of combinatorics

pp → X + N Jets

We expect  to work precisely as in processes  and IC 𝒜0 ℬ0

Our final result will be a generla formula analogous to that we currently 
have for NLO corrections

7.1

7.2

gq → X + (N − 1)g + q + gg



How to complete the Collinear Operator

=
Γa,g + Γb,q

ϵ
+ ∑

i∈ℋfg

Γi,g→gg

ϵ
+ ∑

i∈ℋfq

Γi,q→qg

ϵ
I inc
C (ϵ)

gq → X + (N − 1)g + q + gg

gq → X + (N − 1)g + q′ + q′ ′ ̄q′ ′ 

gq → X + (N − 3)g + q′ + q′ ′ ̄q′ ′ + q′ ′ ′ ̄q′ ′ ′ 
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=
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+ ∑
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+ ∑
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S𝔪𝔫 ⇒ Θ𝔪𝔫Fab
LM[ . . . |𝔪, 𝔫] S𝔪𝔫 ⇒ Fab

LM[ . . . |𝔪, 𝔫]

When we select the unresolved pair

We complete the anomalous dimensions

∑
i∈ℋfg

Γi,g→qq̄

ϵ

Quark LegGluon Leg

∑
i∈ℋfq

Γi,q→gq

ϵ
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∑
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ϵ
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Γi,q→gq
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From a combinatorial perspective, it is more complex than 𝒜05.2

We can see how the final-state quark anomalous dimension arises 5.3

7 At this point, generalizing the calculation for  becomes merely 
a matter of combinatorics

pp → X + N Jets

We expect  to work precisely as in processes  and IC 𝒜0 ℬ0

Our final result will be a generla formula analogous to that we currently 
have for NLO corrections
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We can see how the final-state gluon anomalous dimension arises 5.2
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7 At this point, generalizing the calculation for  becomes merely 
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7 At this point, generalizing the calculation for  becomes merely 
a matter of combinatorics

pp → X + N Jets

We expect  to work precisely as in processes  and IC 𝒜0 ℬ0

Our final result will be a generla formula analogous to that we currently 
have for NLO corrections
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