The SCET power expansion

The analytic regulator

The collinear regions

The back-to-back region 000000

Subleading power corrections to the color-singlet transverse momentum spectra

Alessandro Gavardi

based on ongoing work with Bahman Dehnadi and Frank Tackmann

Deutsches Elektronen-Synchrotron DESY

Milan Christmas Meeting - 19-20 December 2024

Alessandro Gavardi

Subleading power corrections	The SCET power expansion		

Why the subleading power corrections?

- The computation of the non-singular contributions to the spectrum of the given resolution variable (i.e. the transverse momentum of the color singlet q_T) is often the main computational bottleneck in state-of-the-art QCD NNLO calculations
- The analytic knowledge of the spectrum beyond leading power would allow us to
 - \rightarrow Approximate the non-singular contributions in the small $q_{\rm T}$ limit eliminating the need for a numeric subtraction up to very low $q_{\rm T}$ values
 - $\rightarrow\,$ Get an insight into the factorization structure of the next-to-leading power corrections

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region

- 1 Subleading power corrections
- 2 The SCET power expansion
- 3 The analytic regulator
- 4 The collinear regions
- 5 The back-to-back region

Alessandro Gavardi

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
● 000				

1 Subleading power corrections

- 2 The SCET power expansion
- 3 The analytic regulator
- 4 The collinear regions
- 5 The back-to-back region

Subleading power corrections	The SCET power expansion			
0000	0000	000	000000	000000

Subleading power corrections

We consider the process of production of a color singlet (inclusive Drell-Yan for now) from a hadronic scattering

$$h_a h_b \to \mathrm{CS} + X$$

The differential cross section for the process with respect to the color-singlet minus and plus components q⁻ and q⁺ and transverse momentum q_T can be written as

$$\frac{d\sigma_{h_a h_b \to \text{\tiny CS} + X}}{dq^- \, dq^+ \, dq_{\text{\tiny T}}^2} = \mathcal{K}_{\delta} \big(q^-, q^+ \big) \, \delta \big(q_{\text{\tiny T}}^2 \big) + \frac{\mathcal{K} \big(q^-, q^+, q_{\text{\tiny T}}^2 \big)}{q_{\text{\tiny T}}^2}$$

• The QCD logarithmic structure of K is well known and given by

$$\mathcal{K}(q^{-},q^{+},q_{\mathrm{T}}^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{\mathrm{S}}}{2\pi}\right)^{n} \sum_{m=0}^{2n-1} \log^{m} \left(\frac{q_{\mathrm{T}}^{2}}{q^{-}q^{+}}\right) \mathcal{K}_{nm}(q^{-},q^{+},q_{\mathrm{T}}^{2})$$

Alessandro Gavardi

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
0000				

Subleading power corrections

■ The **power structure** of the *K*_{nm} terms is obtained by expanding them with respect to *q*²_T and is given by

$$\mathcal{K}_{nm}ig(q^-,q^+,q_{\scriptscriptstyle \mathrm{T}}^2ig) = \sum_{p=0}^\infty \mathcal{K}_{nmp}ig(q^-,q^+ig)ig(q_{\scriptscriptstyle \mathrm{T}}^2ig)^p$$

At NLO, several results are available (in some cases up to the next-to-next-to-leading power) using both T₀ and q_T as resolution variables [Boughezal, Isgrò, Petriello '18] [Ebert, Moult, Stewart, Tackmann, Vita, Zhu '18] [Ebert, Moult, Stewart, Tackmann, Vita, Zhu '18] [Cieri, Oleari, Rocco '19] [Ferrera, Ju, Schönherr '24]

 \blacksquare Only partial results are available at NNLO and N^3LO [Moult, Rothen, Stewart,

Tackmann, Zhu '16] [Boughezal, Liu, Petriello '16] [Oleari, Rocco '19] [Vita '24]

I will present a systematic way of computing the subleading power corrections at NNLO, i.e. the K_{2mp} terms for 0 ≤ m ≤ 3 and p ≥ 1

Subleading power corrections	The SCET power expansion		The back-to-back region 000000

General picture

- *B*, *V* and *VV*: No partons in the final state, proportional to $\delta(q_T^2)$
 - $\rightarrow \mbox{ They do not contribute at subleading } \label{eq:power}$ power
- *R*, *RV*: One parton in the final state, 4 degrees of freedom: *q*⁻, *q*⁺, *q*²_T and *z*
 - $\rightarrow \mbox{ One PDF convolution, no additional integrals to be done$
- *RR*: Two partons in the final state, 7 degrees of freedom
 - \rightarrow Up to three integrals to be done
 - $\rightarrow~$ Subject of the talk

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
	●000			

1 Subleading power corrections

- 2 The SCET power expansion
- 3 The analytic regulator
- 4 The collinear regions
- 5 The back-to-back region

Alessandro Gavardi

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
	0000			

The SCET power expansion

- We know from the SCET that the contributions to the spectrum will come from the regions of the phase space where the partons are either soft or collinear to the beam
- Given the two strongly separated scales

$$Q\sim \sqrt{q^-q^+} \qquad q_{\scriptscriptstyle
m T}\sim \lambda Q$$

we will get a non-zero contribution from the regions where the partons of momentum k have a

- ightarrow Soft scaling: $k \sim (\lambda, \lambda, \lambda) Q$
- ightarrow *n*-collinear scaling: $k \sim (1, \lambda^2, \lambda) Q$
- $ightarrow ar{n}$ -collinear scaling: $k \sim \left(\lambda^2, 1, \lambda
 ight) Q$

Subleading power corrections to the color-singlet transverse momentum spectra

Subleading power corrections	The SCET power expansion		
	0000		

The SCET regions

The **9** relevant regions predicted by the SCET are those where the two partons have a

 \rightarrow Double soft scaling

$$k_1^- \sim k_1^+ \sim k_2^- \sim k_2^+ \sim \lambda Q$$

 \rightarrow Mixed soft and (*n*- or \bar{n} -) collinear scaling (4 possibilities)

$$k_1^- \sim k_1^+ \sim \lambda Q$$
 $k_2^- \sim Q$ $k_2^+ \sim \lambda^2 Q$

 \rightarrow Double (*n*- or \bar{n} -) collinear scaling (2 possibilities)

$$k_1^- \sim k_2^- \sim Q$$
 $k_1^+ \sim k_2^+ \sim \lambda^2 Q$

 \rightarrow Mixed *n*-collinear and *n*-collinear scaling (2 possibilities)

$$k_1^- \sim k_2^+ \sim Q \qquad k_1^+ \sim k_2^- \sim \lambda^2 \, Q$$

Alessandro Gavardi

Subleading power corrections	The SCET power expansion		
	0000		

Phase space parametrization

A useful way to parametrize the phase space with **two partons in the final state** in terms of plus and minus components is

$$\begin{split} d\Phi_{\rm CS+2j} &= \frac{\left(4\pi\mu^2\right)^{2\epsilon}}{\Gamma(1-2\epsilon)} \frac{dq^- dq^+ dq_{\rm T}^2}{\pi S} \frac{dk_1^- dk_1^+}{\left(4\pi\right)^2} \frac{dk_2^- dk_2^+}{\left(4\pi\right)^2} d\Phi_{\rm CS} \\ &\times \left\{ \left[q_{\rm T}^2 - \left(\sqrt{k_1^- k_1^+} - \sqrt{k_2^- k_2^+}\right)^2 \right] \left[\left(\sqrt{k_1^- k_1^+} + \sqrt{k_2^- k_2^+}\right)^2 - q_{\rm T}^2 \right] \right\}^{-\frac{1}{2}-\epsilon} \\ &\times \theta \left(\left[q_{\rm T}^2 - \left(\sqrt{k_1^- k_1^+} - \sqrt{k_2^- k_2^+}\right)^2 \right] \left[\left(\sqrt{k_1^- k_1^+} + \sqrt{k_2^- k_2^+}\right)^2 - q_{\rm T}^2 \right] \right) \\ &\times \theta \left(\sqrt{S} - q^- - k_1^- - k_2^- \right) \theta \left(\sqrt{S} - q^+ - k_1^+ - k_2^+ \right) \end{split}$$

Subleading power corrections	The SCET power expansion 0000	The analytic regulator ●00	The back-to-back region 000000

1 Subleading power corrections

- 2 The SCET power expansion
- 3 The analytic regulator
- 4 The collinear regions
- 5 The back-to-back region

Alessandro Gavardi

Subleading power corrections	The SCET power expansion 0000	The analytic regulator ○●○	The back-to-back region 000000

The analytic regulator

- The rapidity divergences are regulated through a pure rapidity regulator [Ebert, Moult, Stewart, Tackmann, Vita, Zhu '18] that multiplies the phase space whenever there is at least one parton in the final state
- If k is the total momentum of the final-state partons, the regulator is defined as

$$R_Y = \left(rac{k^-}{k^+}
ight)^{lpha}$$

- This regulator has two main advantages
 - $\rightarrow\,$ It makes the soft contributions zero beyond leading order
 - \rightarrow If there are two partons in the final state, it **does not depend** separately on k_1 and k_2 but only on their sum $k = k_1 + k_2$

Subleading power corrections	The SCET power expansion 0000	The analytic regulator ○○●	The back-to-back region 000000
The soft regi	ons		

- In the region where one parton with rapidity y is soft, the differential cross section can be written as a sum over n of terms proportional to e^{(n+2α)y}
 - Since the integral

$$\int_{-\infty}^{\infty} dy \, e^{Ay} = \int_{0}^{\infty} de^{y} \, \left(e^{y} \right)^{A-1} = 0$$

all the contributions from single-soft regions integrate to $\boldsymbol{0}$

In the region where both the partons are soft, after trading the rapidities y₁ and y₂ of the two partons with the new integration variables

$$\tilde{y} = \frac{y_1 - y_2}{2}$$
 $y = \frac{y_1 + y_2}{2}$

the integral over y vanishes for the same reason

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
			00000	

- 1 Subleading power corrections
- 2 The SCET power expansion
- 3 The analytic regulator
- 4 The collinear regions
- 5 The back-to-back region

Alessandro Gavardi

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
			00000	

The double collinear region

In the region where **the two partons are** n_a -**collinear** it is convenient to introduce

$$y = rac{q_{
m T}^2}{k^- k^+}$$
 $z = rac{q^-}{q^- + k^-}$

and parametrize the phase space as

$$d\Phi_{\rm CS+2j} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\frac{\mu^2}{q_{\rm T}^2}\right)^{\epsilon} \frac{dq^- dq^+ dq_{\rm T}^2 q_{\rm T}^2}{(4\pi)^2 S} \frac{dz}{z(1-z)} \frac{dy}{y^2} \frac{d\Phi_{2j}}{2\pi} d\Phi_{\rm CS}$$

Integration variables

- Analytic integration over Φ_{2j} and y
- Numeric convolution over z

Subleading power corrections	The SCET power expansion	The collinear regions	
		00000	

Leading ϵ poles at leading power

- The angular integration over Φ_{2j} exposes the collinear singularity of the 2nd emission
 - $ightarrow rac{1}{\epsilon}$ pole
- The y integration exposes the **soft singularity** of the 2nd emission $\rightarrow \frac{1}{\epsilon}$ pole
- The q_T^2 distribution exposes the **collinear singularity** of the 1st emission

$$ightarrow \left(q_{\scriptscriptstyle \mathrm{T}}^2
ight)^{-1-\epsilon-lpha} \sim rac{1}{\epsilon+lpha} \, \delta \! \left(q_{\scriptscriptstyle \mathrm{T}}^2
ight) \, \mathsf{pole}$$

The *z* distribution exposes the **soft singularity** of the 1st emission $\rightarrow (1-z)^{-1+2\alpha} \sim \frac{1}{2} \delta(1-z)$ pole

$$\frac{1}{\epsilon^2 \alpha} \frac{1}{\epsilon + \alpha} = \frac{1}{\epsilon^3 \alpha} \left(1 - \frac{\alpha}{\epsilon} \right) = \frac{1}{\epsilon^3 \alpha} - \frac{1}{\epsilon^4} + \mathcal{O}(\alpha)$$

Alessandro Gavardi

Leading ϵ poles at next-to-leading power

The angular integration over Φ_{2j} exposes the collinear singularity of the 2nd emission

 $ightarrow rac{1}{\epsilon}$ pole

- \blacksquare The y integration exposes the **soft singularity** of the 2nd emission $\to \frac{1}{\epsilon+\alpha}$ pole
- The $q_{\rm T}^2$ distribution is now regular
- The *z* distribution exposes the **soft singularity** of the 1st emission $\rightarrow (1-z)^{-1+2\alpha} \sim \frac{1}{\alpha} \,\delta(1-z)$ pole

$$\frac{1}{\epsilon \alpha} \frac{1}{\epsilon + \alpha} = \frac{1}{\epsilon^2 \alpha} \left(1 - \frac{\alpha}{\epsilon} \right) = \frac{1}{\epsilon^2 \alpha} - \frac{1}{\epsilon^3} + \mathcal{O}(\alpha)$$

Alessandro Gavardi

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
			000000	

The mixed collinear and anti-collinear region

In the region where one parton is n_a -collinear and the other is n_b -collinear it is convenient to introduce

$$z_a = rac{q^-}{q^- + k_1^-} \qquad z_b = rac{q^+}{q^+ + k_2^+}$$

and parametrize the phase space as

$$d\Phi_{\rm CS+2j} = \frac{dq^{-}dq^{+}dq_{\rm T}^{2}}{S} d\Phi_{\rm CS} \mu^{2\epsilon} \frac{d^{2-2\epsilon} k_{\rm LT}}{2(2\pi)^{3-2\epsilon}} \frac{dz_{a}}{z_{a}(1-z_{a})} \\ \times \mu^{2\epsilon} \frac{d^{2-2\epsilon} k_{\rm 2T}}{2(2\pi)^{3-2\epsilon}} \frac{dz_{b}}{z_{b}(1-z_{b})} \delta\left(q_{\rm T}^{2} - \left(\vec{k}_{\rm LT} + \vec{k}_{\rm 2T}\right)^{2}\right)$$

Integration variables

- Analytic integration over k_{1T} and k_{2T}
- Numeric convolution over z_a and z_b

Alessandro Gavardi

Deutsches Elektronen-Synchrotron DESY

The mixed collinear and anti-collinear region

The analytic regulator in the mixed collinear and anti-collinear region reads

$$R_{Y} = \left(\frac{q^{-}(1-z_{a})z_{b}}{q^{+}z_{a}(1-z_{b})}\right)^{\alpha} \left[1 + \alpha \frac{z_{a}z_{b}\left(k_{2T}^{2} - k_{1T}^{2}\right)}{q^{-}q^{+}(1-z_{a})(1-z_{b})} + \mathcal{O}(\alpha^{2})\right]$$

NO ϵ^3 POLES

The leading poles are proportional to

$$\left(1-z_{a}
ight)^{-1+lpha}\left(1-z_{b}
ight)^{-1-lpha}rac{1}{\epsilon^{2}}\simrac{1}{lpha^{2}\,\epsilon^{2}}$$

Alessandro Gavardi

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
				00000

- 1 Subleading power corrections
- 2 The SCET power expansion
- 3 The analytic regulator
- 4 The collinear regions
- 5 The back-to-back region

The need for an additional region

After combining the contributions from the SCET regions

- $\rightarrow\,$ All the $\alpha\,$ poles cancel
- \rightarrow The ϵ poles **DO NOT** cancel

SOMETHING IS MISSING

We need to study the phase space more carefully

The phase space constraint

$$heta \left(\left[q_{_{
m T}}^2 - \left(k_{1{_{
m T}}} - k_{2{_{
m T}}}
ight)^2
ight] \left[\left(k_{1{_{
m T}}} + k_{2{_{
m T}}}
ight)^2 - q_{_{
m T}}^2
ight]
ight)$$

also allows for a back-to-back region where

$$k_{\scriptscriptstyle \mathrm{T}}^+ = k_{1\scriptscriptstyle \mathrm{T}} + k_{2\scriptscriptstyle \mathrm{T}} \sim Q$$
 $k_{\scriptscriptstyle \mathrm{T}}^- = k_{1\scriptscriptstyle \mathrm{T}} - k_{2\scriptscriptstyle \mathrm{T}} \sim \lambda Q$

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
				000000

The back-to-back region

In the back-to-back region, it is convenient to write the phase space as

$$d\Phi_{\rm CS+2j} = \frac{(4\pi)^{2\epsilon}}{\Gamma(1-2\epsilon)} \frac{dq^- dq^+ dq_{\rm T}^2}{\pi S} \left(\frac{\mu^2}{q^- q^+}\right)^{\epsilon} \left(\frac{\mu^2}{q_{\rm T}^2}\right)^{\epsilon} \frac{q^- q^+}{(4\pi)^4} d\Phi_{\rm CS}$$
$$\times \frac{dz_a}{z_a^2} \frac{dz_b}{z_b^2} \left(\frac{z_a}{1-z_a}\right)^{\epsilon} \left(\frac{z_b}{1-z_b}\right)^{\epsilon}$$
$$\times \frac{d\mathbf{v}}{2} \left(1-\mathbf{v}^2\right)^{-\epsilon} d\mathbf{w} \left(1-\mathbf{w}^2\right)^{-\frac{1}{2}-\epsilon} + \mathcal{O}(\lambda^4)$$

where we defined

$$\begin{aligned} z_{a} &= \frac{q^{-}}{q^{-} + \frac{k_{\mathrm{T}}^{+}}{2} \left(e^{y_{1}} + e^{y_{2}}\right)} & z_{b} &= \frac{q^{+}}{q^{+} + \frac{k_{\mathrm{T}}^{+}}{2} \left(e^{-y_{1}} + e^{-y_{2}}\right)} \\ v &= \sqrt{1 - \frac{\left(k_{\mathrm{T}}^{+}\right)^{2}}{q^{-}q^{+}} \frac{z_{a}}{1 - z_{a}} \frac{z_{b}}{1 - z_{b}}} & w &= \frac{k_{\mathrm{T}}^{-}}{\sqrt{q_{\mathrm{T}}^{2}}} \end{aligned}$$

Alessandro Gavardi

Properties of the back-to-back region

- The region requires at least two partons in the final state
 - \rightarrow It does not contribute at NLO
- The region is naturally power-suppressed
 - \rightarrow It does not contribute at leading power
- The region does not produce any α pole
- The terms of the power expansion proportional to an **odd power** of $q_{\rm T}$ are also proportional to an **odd power** of *w*, whose integration range is (-1, 1)
 - \rightarrow They integrate to 0
- After combining the results from this region with those from the other (collinear) regions, all the ϵ poles properly cancel

Subleading power corrections	The SCET power expansion		The back-to-back region 0000●0
Conclusions			

- We presented a framework for computing the subleading power corrections to the differential cross section for the production of an electroweak boson
- We derived the soft and collinear contributions expanding the cross section in the regions predicted by the SCET
- In the case where there are two partons in the final state, the SCET regions are NOT enough to correctly cancel all the *ε* poles, but we need an additional region, where the two partons are hard but almost back-to-back in the transverse plane
- After adding the extra region, all the ϵ poles properly cancel

Thanks for your attention!

Subleading power corrections	The SCET power expansion	The analytic regulator	The collinear regions	The back-to-back region
				000000

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement 101002090 COLORFREE).

Alessandro Gavardi