

High Intensity ECN3 (HI-ECN3) Project: SPS Beam Dump Facility

M. Fraser (SY-ABT-BTP) presenting on behalf of the HI-ECN3 Project Team

214th TE-TM meeting, CERN, Geneva, Switzerland

4th November 2024

https://hiecn3.web.cern.ch

Beam Dump Facility (BDF) / SHiP

Direct search for Feebly Interacting Particles (FIPs) at a new Beam Dump Facility to be installed in ECN3 to exploit 4×10^{19} protons (400 GeV/c) per year for 6×10^{20} POT over 15 years to overcome the small cross-section of ultra-rare events:

- SHiP Physics Proposal: Rep. Prog. Phys. 79 (2016) 124201 published 2016
- SPS Beam Dump Facility Comprehensive Design Study: <u>CERN-2020-002</u> published 2020

C. Ahdida et al., Findings of the Physics Beyond Colliders ECN3 Beam Delivery Task Force, CERN-PBC-REPORT-2023-001

SHiP's bow wave is made of $\mu \& \overline{\mu} \dots$

Study Project -> Approved Project

Upgrade of beam intensity at North Area and SHiP beam-dump (BDF/SHiP) experiment approved recently...

... with ~ 62 MCHF (over 7 years) reserved for the High Intensity upgrade of ECN3 (HI-ECN3) project in CERN's Medium-Term Plan ratified by CERN Council in June 2024.

Approved together with ~ 170 MCHF for consolidation of the North Area (NA-CONS project)

The HI-ECN3 project is a part of CERN's...

"...broad diverse scientific programme, complementary to the collider and carried out mainly at the injectors: continuously upgraded and expanded (e.g. recently the ECN3 beam intensity upgrade at the North Area)."

Fabiola Gianotti

For more information on the competitive ECN3 decision process:

- C. Ahdida et al., Findings of the Physics Beyond Colliders ECN3 Beam Delivery Task Force, CERN-PBC-REPORT-2023-001
- G. Arduini, C. Vallée, J. Jaeckel (eds.) *Post-LS3 Experimental Options in ECN3*, CERN-PBC-REPORT-2023-003

North Area Consolidation & Upgrade

NA-CONS consolidation project

HI-ECN3 project

CERN Accelerator Schedule

HI-ECN3 Project Timeline

Beam on BDF Target

How many protons for BDF / SHiP? (i)

Short 7.2 s SHiP cycles with a 1.2 s FT (~ 1 s spill) vs. 14.4 s SFTPRO period

SPS Page 1 during BDF prototype target test at T6 in 2018

T. Prebibaj et al., SPS Operation and Future Proton Sharing Scenarios for the ECN3 facility, CERN-PBC-Notes-2023-001

How many protons for BDF / SHiP? (ii)

Slow Extraction from LSS2 in SPS

L. Esposito et al., Progress on optimised TECA and MVRA production, <u>SLAWG #76: Crystal shadowing and production</u>, August 2024 F. M. Velotti et al., Phys. Rev. Accel. Beams 22, 093502 (2019)

Crystal Shadowing of electrostatic septa

L. Esposito et al., Progress on optimised TECA and MVRA production, <u>SLAWG #76: Crystal shadowing and production</u>, August 2024 F. M. Velotti et al., Phys. Rev. Accel. Beams 22, 093502 (2019)

Crystal Shadowing of electrostatic septa (ii)

Objective: achieve an even higher loss reduction factor (x10?!) with advanced crystal technology (**multiple thin, bent crystals aligned for Volume Reflection**) installed in SPS

SFTPRO shared Beam Delivery to ECN3

Dedicated Beam Delivery to ECN3

Civil Engineering Scope

- New target building: adjacent to building $911 \rightarrow B.754 / BB85$
- New access shaft (PA855), connecting tunnel to ECN3 and access building \rightarrow B. 758 / BA85
- Underground excavations: in Target complex (TCC8) and Experimental Area (ECN3)

NA62 in ECN3

 Dismantling will start immediately in LS3 to allow civil engineering works to get underway ASAP

NA62 Dismantling: an example

Expert technical support from Johan BREMER (TE-CRG)

Upgrade of TCC2 T4 Target System for BDF/SHiP (i)

Looking downstream from on top of T4 target

Urgent design effort ongoing !

Upgrade of TCC2 T4 Target System for BDF/SHiP (ii)

Today, operation of EHN1 (H6/H8 test beams) is coupled with ECN3 (NA62)

Secondary particles for EHN1 are selected using magnet wobbling system, whilst protons not interacting with the target are transmitted to NA62
To EHN1: H6

F. Metzger et al, Beam line and parameters, 30th SHiP collaboration meeting, ALU Freiburg, 1 – 4 October 2024

Upgrade of TCC2 T4 Target System for BDF/SHiP (iii)

A pulsed magnet allows us to decouple proton beams on the dedicated HI-ECN3 cycle in the horizontal plane (in addition to vertical separation to avoid target) To EHN1: H6 To EHN1: H8

Matthew FRASER | HI-ECN3 and the BDF

214th TE-TM meeting

BDF Dilution System

Present baseline:

- Slow sweep = 4 Hz over a 1 second spill
- $\pi/2$ scheme: independently powered laminated dipole magnets:
 - 2H + 2V magnets (~ 0.5 mrad, 0.7 Tm per plane)
 - de-phased by 90 degrees to give circular spill
- Beam profiler(s) to check beam position, size & sweep post-operatior
- **Challenge:** protection of the target critical, loss of dilution during single spill will likely damage the target
- Independent interlock system needed for redundancy:
 - Independent DCCTs measurement current in dilution dipole magnets
 - Dedicated "live" beam position monitoring of beam during its sweep

BDF Target Baseline Design

13 x TZM blocks (580 mm)

Baseline design:

- Water-cooled, Mo & W blocks (cladded with Ta)
- Tested with beam in 2018 & PIE

TDR phase needed to improve CDS design:

- Alternatives to water-cooling to avoid cladding and the risk of development of free radicals (hydrogen)
- Helium-cooled pure W design now being prototyped: tests in TCC2 planned in 2025 and 2026

Baseline beam parameters of the BDF Target operation. <u>https://doi.org/10.23731/CYRM-2020-002</u>

Proton momentum (GeV/c)	400
Beam intensity (p ⁺ /cycle)	4×10^{13}
Cycle length (s) $\sim 4.0 \times 10^{19} \text{ p}^{+/\text{y}}$	7.2
Spill duration (s)	1.0
Beam dilution pattern	Circular
Beam sweep frequency (turns/s)	4
Dilution circle radius (mm)	50
Beam sigma (H, V) (mm)	(8, 8)
Average beam power (kW)	356
Average beam power deposited in target (kW)	305
Average beam power during spill (MW)	2.3

BDF Target Complex in TCC8 (i)

BDF Target Complex in TCC8 (ii)

- BDF/SHiP has been approved to search directly for dark matter at the North Area
- CERN has reserved budget in its Medium-Term Plan for the construction of a new facility in ECN3 under the project named HI-ECN3 to fully exploit the investment being made in the North Area Consolidation project
- Some ~ 10 years of R&D will converge into a Technical Design Report to realise a slow extracted beam power of 300 kW (avg.) to the North Area
- HI-ECN3 TDR will be published in 2026, building on the SPS BDF Comprehensive Design Study published in 2020
- First beam on target expected in 2031 to give SHiP at least 2 years of beam before LS4

home.cern

NA-CONS / HI-ECN3 Synergy

- Joint NA-CONS / HI-ECN3 TCC meeting series: critical for advancement of TCC2 upgrades fro BDF & implicated systems, next items include P42 dump and BA82
- HI-ECN3 ICEA:* first dedicated agenda on integration to take place in two weeks (impacted NA-CONS items already discussed in ICEA for many months) co-chaired by Francois Butin and Jean Louis Grenard
- WP7.1 NA-CONS Synergism: collecting and documenting impacted systems and NA-CONS WPs key role played by Fernando PEDROSA & Thomas ZICKLER (timing, magnets, power converters, BA82, etc.)

Prompt Radiation in TCC8

Avg. intensity of 5.6×10¹² p/s

Cross-sectional view

Side view

Annual

Shielding design is well optimized for the prompt radiation \succ

Ambient dose equivalent rate

214th TE-TM meeting

Area

Upstream of vessel w/o upstream shielding

Preliminary worst case manual intervention scenario

Prompt Radiation in TCC8

Total POT 6×10²⁰

Cross-sectional view, target level 109 10⁸ 1200 1m 1 month cool-down 6m 108 107 1000 1y (13240 cm < z < 13390 cm) (15 cm < y < 45 cm)107 10⁶ (13240 cm < z < 13390 cm) 800 106 105 H*(10) [uSv/h H*(10) [µSv/h] 600 y [cm] 104 400 10^{4} 10^{3} 103 200 10² 10² 0 10¹ 10¹ /essel -200 100 -200 0 200 400 600 -800 -600 -400 -200 0 200 400 600 800 y [cm] x [cm]

- The shielding design contains well the high residual dose rates reaching \geq in the central target region several 10 Sv/h after 1 month of cool-down
- The residual dose rates outside the shielding are $< 1 \mu Sv/h$

Along x-axis, working height

- After opening vessel & removing shielding, residual dose rates of several 100 µSv/h are expected
- Supervised Radiation Area on the sides
- Further optimization by movable shielding \geq

Environmental Aspects

POT 4×10¹⁹ per year

Dose from air releases

• Used max. dose coefficients from different age groups

Effective dose estimates

Air	Total A [Bq]	Effective Dose [μ Sv/y]
CASE 1	3.69×10^6	1×10^{-5}
CASE 2	1.19×10^{11}	3×10^{-3}

H-3 release due to air activation of ~80 kBq

Positions of nearby population groups

Dose from stray radiation

Annual effective dose from muons

Annual limit of Non-designated Area on CERN domain and at CERN fence (1 mSv/y) as well as dose objective for members of the public (10 uSv/y) is by far met

