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Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays
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Colliders in the real world
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Colliders for theorists
• Event simulation factorised into


• Hard Process


• Parton Shower


• PDF/Underlying event


• Hadronisation


• QED radiation


• Hadron Decays
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QCD in the soft limit
• factorisation in the soft limit (‘Eikonal’)                 


• integrate over triangle in “Lund plane” pk pi

(pkq)(piq)
∼ 1/k2

t

dΦ+1 ∼ dk2
t dη dϕ

rapidity
transverse momentum

azimuthal

angle

η

ln
kt

Q
longitudinal momentum 

     conservation:    η < ln kt /Q

constraint V(Φn, kt, η) < v

softer

particles

more collinear

particles

dσn+1 = dσn ⊗ dΦ+1
αs

2π ∑
k,i

𝕋k𝕋i
pkpi

(pkq)(piq)

single emission 

phase space

e.g. take 
V(kt, η) = kt /Q

→
αs

2π ∫
Q

vQ

dkt

kt ∫
ln kt/Q

0
dη ∼

αs

2π
ln2 1/v
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Relation to structure of (NLL) resummation
• Additional components: collinear terms form DGLAP splitting kernels, running 

coupling and CMW scheme for  evolution  relevant for single emission 
only


• Simple event shape:

αs →

Σ(v) = ∫ dΦne−R(v)ℱ(v) ∼ exp(Lg1(αsL) + g1(αsL))

R(v) = ∫ dΦ+1
dσ+1

dΦ+1
Θ(V(Φ+1) − v)

ℱ(v) = lim
ϵ→0

ϵR′ ∑
m

∫ dΦ+1
dσ+1

dΦ+1
Θ (1 − lim

ρ→0

V(kρ
i )

ρv )

L ≡ ln 1/v

gi ≡ ∑
k

αk
s Lk

F(τ) =
exp(−γER′ )
Γ(1 + R′ )

For example thrust:
• Multiple emissions expressed as
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Parton showers - Cliff notes version
• no-emission probability (sudakov factor)


• Main ingredients to a shower:


1. splitting kernels  captures soft and 
collinear limits of matrix elements


2. fill phase space ordered in evolution 
variable ( , , , ), definition of  away 
from exact limit (here all showers  ordered)


3. generate new final state after emission 
according to recoil scheme

P(z)

kt θ q2 … t, z
kt

η

ln
kt

Q
longitudinal momentum 

     conservation:    η < ln kt /Q

softer

particles

more collinear

particles

∼ exp [−∫
t1

t0

dkt

kt
dz

αS

2π
P(z)]



2

(a) (b)

FIG. 1. Leading order contributions to dipole-shower evolution in the soft limit. The double solid lines represent hard (identified)
partons i.e. Wilson lines.

II. ANALYTIC COMPUTATION OF DOUBLE-SOFT CORRECTIONS

We employ the formalism for the construction of parton showers at next-to-leading order accuracy originally pro-
posed in [13]. This technique is based on a modified subtraction method combined with a new algorithm for mapping
n-particle on-shell momentum configurations to n+2-particle on-shell momentum configurations and the replacement
of explicit symmetry factors by appropriate light-cone momentum fractions that can be identified as “tags” for evolv-
ing partons. The extension of this method to soft evolution at next-to-leading order requires the removal of overlap
between the explicitly included higher-order corrections in the CMW scheme [20] and the potentially included triple-
collinear splitting functions [13]. In this section we will first derive analytic results for the double-soft corrections at
next-to-leading order. We define the kinematics in Sec. IIA, present the individual corrections in Sec. II B and collect
the results in Sec. II C. Based on this calculation, Sec. III introduces a modified subtraction technique and addresses
the overlap removal.
The leading-order contributions to the soft function, which described the interaction between two hard jets of collinear
particles through soft gluon exchange [22–24] are shown in Fig. 1. The double solid lines represent the hard legs, and
the dashed line indicates the cut. The virtual correction is given by a scaleless integral and vanishes in dimensional
regularization [25]. The diagram in Fig. 1(b) and its mirror conjugate generate the eikonal factor

S(0)
ij (q) = �TiTj S(0)

ij (q) , where S(0)
ij (q) = g2sµ

2" pipj
2 (piq)(q pj)

= g2sµ
2" sij

siqsjq
. (1)

Here and in the following we will label the Wilson lines by i and j, while the soft momenta will be denoted by 1 and
possibly 2. We also refer to the combined soft momentum as q, where q = p1 and q = p1+p2 in one- and two-emission
configurations, respectively. We restrict our analysis to the improved leading-color approximation typically used in
parton-shower simulations. In processes with n possibly color-connected partons, the eikonal term, Eq. (1), is first
partial-fractioned [26], and subsequently the color-insertion operator TiTj is approximated by assuming independence
of the kinematics. This leads to the replacement

nX

i=1
j=i+1

S(0)
ij (q) = �

nX

i,j=1
j 6=i

TiTj D(0)
i,j (q) !

nX

i,j=1
j 6=i

Ci

n
D(0)

i,j (q) , where D(0)
i,j (q) = g2sµ

2" 1

siq

sij
siq + sjq

. (2)

As the partial fraction Di,j(q) can be matched to the collinear limit unambiguously, the corresponding color Casimir
operator, Ci, should indeed be associated with the emission in the soft-collinear limit. This approximation proves to
be very accurate in practice. We therefore postpone the exact treatment of the color insertion operators to future

work and perform our analysis based on S(0)
ij (q). We also point out that including the full next-to-leading order

corrections to Eq. (2) requires that the first sub-leading color correction be implemented in the parton shower if the
two-loop cusp anomalous dimension is to be recovered in the fully di↵erential calculation. These terms are related to
color factors of the form CF � CA/2, where the first contribution is absorbed into the exponentiated leading-order
soft result, and the second term becomes part of the genuine two-loop result [27, 28]. This will be discussed in detail
in Sec. III, and related numerical comparisons will be made in Sec. IV.

The virtual corrections to the single emission have been computed in [29, 30]. They are given by

S(virt)
ij (q) = �CA

g4s
8⇡2

(4⇡µ4)"

"2
�4(1� ")�3(1 + ")

�2(1� 2")�(1 + 2")

✓
sij

siqsjq

◆1+"

. (3)
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Alaric Splitting Functions - Eikonal
Starting point: eikonal pipk

(pipj)(pjpk)
=

1
E2

j

1 − cos θik

(1 − cos θij)(1 − cos θjk)
≡

Wik,j

E2
j

naive implementation leads to soft double counting need to 
split into  and  collinear terms             [Marchesini, Webber ‘88]ij kj

2

The price for such a generic scheme is a dependence of the parton shower splitting functions on the azimuthal angle
between the decay plane and the plane defined by the emitting parton and its color spectator. Our new formulation
presents a major extension of existing parton shower formalisms in this regard, and it introduces the most generic form
of a spin-averaged splitting function in four dimensions, with a dependence on all three phase-space variables of the
radiated parton. Based on previous analyses [73, 74], it seems plausible that this scheme will considerably simplify the
inclusion of higher-order corrections to the splitting kernels. We provide a first implementation of the new algorithm
in the numerical code Alaric1, which will be made available as part of the event generator Sherpa [75–77].

This manuscript is organized as follows: In Sec. II we revisit the soft singularity structure of QCD amplitudes
and introduce our new decomposition of the soft eikonal. In Sec. III we discuss the novel phase-space mapping and
the corresponding phase-space factorization. In Sec. IV we detail how soft and collinear emissions are generated in a
probabilistic picture. Section V is dedicated to the analytic proof of logarithmic accuracy, and the numerical validation
in the ↵s ! 0 limit. Section VI presents first numerical results for the process e+e� ! hadrons, and Sec. VII contains
an outlook.

II. THE MATCHING OF SOFT TO COLLINEAR RADIATORS

We start the discussion by recalling the singularity structure of n-parton QCD amplitudes in the infrared limits.
If two partons, i and j, become collinear, the squared amplitude factorizes as

nh1, . . . , n|1, . . . , nin =
X

�,�0=±

n�1

D
1, . . . , i\(ij), . . . , j\, . . . , n

���
8⇡↵s

2pipj
P��

0

(ij)i(z)
���1, . . . , i\(ij), . . . , j\, . . . , n

E

n�1
, (1)

where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The functions P��

0

ab
(z) are the spin-dependent DGLAP splitting functions. They depend on

the momentum fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [3–6]. In the
collinear limit, the momentum fraction is equal to an energy or light-cone momentum fraction. In this manuscript
we will consider only spin-averaged splitting functions; algorithms for spin-dependent evolution are discussed in [23–
26, 78].

In the limit that gluon j becomes soft, the squared amplitude factorizes as [79]

nh1, . . . , n|1, . . . , nin = �8⇡↵s

X

i,k 6=j

n�1

⌦
1, . . . , j\, . . . , n

��TiTk wik,j

��1, . . . , j\, . . . , n
↵
n�1

, (2)

where Ti and Tk are the color insertion operators defined in [72]. In the remainder of this section we will discuss the
case of massless radiators only and focus on the eikonal factor, wik,j , and how it can be rewritten in a suitable form
to match the spin-averaged splitting functions Pab(z) in the soft-collinear limit. Since our analysis concerns only the
denominator of wik,j , it will apply to spin-correlated evolution as well. The eikonal factor is given by

wik,j =
pipk

(pipj)(pjpk)
, (3)

and it can be written in terms of (frame-dependent) energies and angles as

wik,j =
Wik,j

E2
j

, where Wik,j =
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
, (4)

We note that Eq. (4) is symmetric in i and k, and that it encapsulates the complete soft singularity structure of the
hard matrix element [79]. If we were to implement Eq. (4) for each of the radiators i and k in the collinear limit, we
would therefore double-count the most singular component of the emission probability [80]. This is known as the soft
double-counting problem, which can be solved by following the technique of [21]. In this approach, Wik,j is written
as a sum of two terms, which are enhanced only in either the ij- or kj-collinear limit:

Wik,j = W̃ i

ik,j
+ W̃ k

ki,j
, where W̃ i

ik,j
=

1

2

✓
1� cos ✓ik

(1� cos ✓ij)(1� cos ✓jk)
+

1

1� cos ✓ij
�

1

1� cos ✓jk

◆
. (5)

1 Alaric is an acronym for A Logarithmically Accurate Resummation In C++

Option 1:

• e.g. Angular ordered shower, downside: problems with NGLs

Option 2: follow [Catani, Seymour ’97]

3

(a) (b) (c)

FIG. 1: Azimuthally integrated radiator functions. Figures a and b show the positive and negative contributions to
Ĩi
ik,j

arising from the additive matching in Eq. (5), Fig. c displays Īi
ik,j

from the multiplicative matching in Eq. (9).

It is customary to define the z-axis to be aligned with the momentum pi, such that we can write cos ✓jk in terms of
polar angles, ✓ i

j
, ✓ i

k
with respect to the axis defined by pi, and the azimuthal angle � i

jk
in the same frame. Note in

particular that ✓ i

l
= ✓li, for any l.

cos ✓jk = cos ✓ i

j
cos ✓ i

k
+ sin ✓ i

j
sin ✓ i

k
cos� i

jk
. (6)

When performing the azimuthal averaging, we find the simple result [21]

1

2⇡

Z 2⇡

0
d�i

jk
W̃ i

ik,j
=

Ĩi
ik,j

1� cos ✓ i

j

, where Ĩi
ik,j

=

(
1 if ✓ i

j
< ✓ i

k

0 else
. (7)

The behavior of Ĩi
ik,j

as a function of the polar angles is known as angular ordering, which means that the total

probability for soft radiation averages to zero outside of a cone defined by the cusp angle ✓ i

k
of the radiating color

dipole. This is the origin of the coherent branching formalism and the basis for angular ordered parton showers. It is
instructive to investigate this radiation pattern in more detail. Figures 1a and 1b display the positive and negative
contribution to the azimuthal integral, normalized to 2⇡, as a function of the polar angles. The partial radiator
function W̃ i

ik,j
has a root at

cos� i(0)
jk

= �

s
1 + cos ✓ i

j

1� cos ✓ i

j

1� cos ✓ i

k

1 + cos ✓ i

k

(8)

which falls inside the integration domain if ✓ i

j
> ✓ i

k
. In this case, the negative contribution to the azimuthal integral

is equal in magnitude to the positive contribution, such that the average radiation probability vanishes identically.
However, there is a strong modulation of this probability as a function of the azimuthal angle. If this modulation
is not included in a parton-shower simulation, wide-angle soft radiation e↵ects will only be captured correctly for
observables that are su�ciently insensitive to the precise distribution of radiation in phase space.

A naive attempt to solving this problem would be to include the full azimuthal dependence of the radiator function
in the Monte-Carlo simulation. Such an approach is bound to fail, because in the region ✓ i

j
> ✓ i

k
one would need to

sample the same amount of negative and positive weighted Monte-Carlo events, leading to an e�ciency of exactly
zero. We therefore adopt a di↵erent strategy, pioneered in [72], where the radiator function is partial fractioned such
that it maintains strict positivity

Wik,j = W̄ i

ik,j
+ W̄ k

ki,j
, where W̄ i

ik,j
=

1� cos ✓ik
(1� cos ✓ij)(2� cos ✓ij � cos ✓jk)

. (9)

• full phase space coverage, splitting functions remain positive definite

Note related ideas in [Forshaw, Holguin, Plätzer ’20] 
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Alaric Kinematics - splitting vs. radiation kinematics
• Before splitting: • After splitting:

5

�

K
pj

~kT
pi

pij
�~kT

K̃ p̃ij

FIG. 2. Sketch of the splitting kinematics in final-state evolution. See the main text for details. Note that the unlabeled
momentum is unaltered by the mapping, and only acts as a reference direction to define the azimuthal angle �.

B. Splitting kinematics

In this section, we describe the kinematics for the implementation of the purely collinear components of the splitting
functions in Eq. (12). This is sketched in Fig. 2. We make use of some of the notation in [11], in particular

y =
pipj

pipj + piK + pjK
, z =

piK

piK + pjK
, (24)

and we define the scaled masses

µ
2
i =

m
2
i

2p̃ijK̃
, µ

2
j =

m
2
j

2p̃ijK̃
,  =

K̃
2

2p̃ijK̃
, ̄ =

2

1 + vp̃ij ,K̃

. (25)

We also introduce the following variables

↵ij = y + (1� y)(µ2
i + µ

2
j ) , ↵̄ij =

2↵ij

1 + vp̃ij ,K̃

, µ
2
ij =

m
2
ij

2p̃ijK̃
, µ̄

2
ij =

2µ2
ij

1 + vp̃ij ,K̃

. (26)

In terms of the additional variables

zij =
1

2↵̄ij

 
1 + ↵̄ij

1 + ̄
+ µ̄

2
ij �

s✓
1� ↵̄ij

1 + ̄
+ µ̄

2
ij

◆2

�
4↵̄ij ̄

1 + ̄

!
, z̄ij =

2zij
1 + vp̃ij ,K̃

,

z̄ =

z
�
1� ↵ij + µ

2
ij

�
�
�
↵ij + µ

2
i � µ

2
j

� z̄ij

1� z̄ij↵ij + µ̄
2
ij

1� z̄ij↵ij + µ̄
2
ij

z̄ij
�

z̄ij↵ij

1� z̄ij↵ij + µ̄
2
ij

,

(27)

the momenta after the splitting are given by

p
µ
i = z̄

p̃
µ
ij � µ̄

2
ijK̃

µ

z̄ij vp̃ij ,K̃

+
⇣
y(1� z̄)(1 + µ

2
ij � µ

2
i � µ

2
j )� z̄(µ2

i + µ
2
j ) + 2µ2

i

⌘ K̃
µ
� ̄ p̃

µ
ij

vp̃ij ,K̃
/zij

+ k
µ
? ,

p
µ
j = (1� z̄)

p̃
µ
ij � µ̄

2
ijK̃

µ

z̄ij vp̃ij ,K̃

+
⇣
y z̄ (1 + µ

2
ij � µ

2
i � µ

2
j )� (1� z̄)(µ2

i + µ
2
j ) + 2µ2

j

⌘ K̃
µ
� ̄ p̃

µ
ij

vp̃ij ,K̃
/zij

� k
µ
? .

(28)

The transverse momentum squared is given by

k2? = 2p̃ijK̃
h
z̄(1� z̄)↵ij � (1� z̄)µ2

i � z̄µ
2
j

i
. (29)

The construction of the transverse momentum vector proceeds as described in Sec. IIIA. While the choice of the
reference vector defining n

µ
? is in principle arbitrary, it can be made conveniently, e.g., to aid the implementation of

spin correlations in collinear gluon splittings.

IV. PHASE SPACE FACTORIZATION

In this section, we discuss the factorization of the di↵erential n+ 1 particle phase-space element into a di↵erential
n particle phase-space element and the radiative phase space. We start from the generic four-dimensional expression

• traditional dipole scheme: share transverse momentum recoil between splitter 
and spectator


• advantage: treat both particles symmetric, seems like a natural choice for e.g. 
 splitting (at least naively)


• disadvantage: significant impact on emitter kinematics possible, only 
applicable to purely collinear splitting functions (see later)

g → qq̄
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Alaric Kinematics - global recoil scheme

5

K̃ p̃i

p̃k

�

n pi

pk~kT pj

K�~kT

FIG. 2: Sketch of the momentum mapping for final-state evolution. See the main text for details. Note that pk does
not participate in the shift, Eq. (17), and only acts as a reference for the azimuthal angle �.

leading logarithmic accuracy. A key requirement for the construction of any momentum mapping therefore is collinear
safety, and all known parton-shower algorithms satisfy this constraint. An example for a problem which may only
be seen in dedicated measurements was identified in [53]. It originates in a modification of existing soft momenta in
subsequent emissions, that introduces an error in the simulated QCD radiation pattern at next-to-leading logarithmic
accuracy. In the following, we will construct a generic, collinear and NLL safe momentum mapping for both final-state
and initial-state radiation, which is inspired by the identified–particle dipole subtraction algorithm in [72]. We will
provide the analytic proof of NLL safety in Sec. VA and sketch the additional steps that are required to match the
parton shower to NLO calculations in Appendix C.

We begin by describing the logic underpinning our new kinematics mapping, {p̃l} ! {pl}. We identify the splitter
momentum, p̃i, and define a recoil momentum, K̃, as the negative sum of all momenta in the radiating QCD multipole,
including the momentum of the splitter (see also Appendix A).3 Together, the momenta K̃ and p̃i define the reference
frame of the splitting, as shown schematically in Fig. 2 (left). The momentum of the color spectator, p̃k, defines an
additional direction, which provides the reference for the azimuthal angle, �. In the first step of the mapping, the
emitter momentum is scaled by a factor z, and the emitted momentum, pj , is constructed with transverse momentum

component ~kT and suitable light-cone momenta. The color spectator remains unchanged, pk = p̃k. The recoil is
absorbed by the overall multipole, such that after the emission we have K 6= K̃, while K2 = K̃2. In particular,
the multipole after the emission acquires a transverse momentum with respect to K̃. This is shown schematically in
Fig. 2 (right). To compensate for both the transverse and the longitudinal recoil, the overall multipole is boosted to
its original frame of reference. This changes all momenta and e↵ectively distributes the recoil among them, generating
changes of the order of kT /

p
K2, which vanish in the infrared limits. We will make use of this fact in Sec. VA.

A collinear safe momentum mapping requires that for any two massless collinear partons, i and j, the momenta
behave as

pi
i||j

�! z p̃i , pj
i||j

�! (1� z) p̃i . (15)

In the exact limit, cos ✓ij = 0, the splitting variable z is uniquely defined and given by

z =
pin

(pi + pj)n
. (16)

where n is an arbitrary auxiliary vector that satisfies p̃in 6= 0. Note that n can be either light-like, time-like or
space-like, as long as p̃in 6= 0. In order to construct a collinear-safe momentum mapping for arbitrary values of the
two-particle virtuality pipj , we can simply use the first part of Eq. (15) away from this limit. This implies in particular
that pi retains its direction, and that all angular radiator functions involving pi remain unchanged.

A second important constraint for the mapping is overall four-momentum conservation. We satisfy this by defining
a vector K̃ to be a combination of the momenta {p̃1, . . . , p̃

µ

j�1, p̃
µ

j+1, . . . , p̃n}, and by using the shift

pi = z p̃i , n = K̃ + (1� z) p̃i , (17)

which implies pi + n = p̃i + K̃. The remaining task is to construct two new vectors, K and pj , such that K2 = K̃2,
and such that pj satisfies the collinear safety constraint, Eq. (15). The momenta in K̃ are mapped to new momenta
by a Lorentz transformation that is defined in terms of K̃ and K. The simplest way to obtain the new momenta is
by means of a light-cone parametrization [81]. With the help of the light-like vector

n̄ = n�
n2

2p̃in
p̃i = K̃ �  p̃i , where  =

K̃2

2p̃iK̃
. (18)

3
This construction di↵ers from the traditional choice in parton and dipole showers, where the splitter and recoil partner are disjoint.

colour spectator

splitter
other momenta ∑ ki

kμ
i → Λμ

νkν
i

pk = p̃k

pi = zp̃i
K2 = K̃2

K̃ + p̃i = K + pi + pj

Λμ
ν = gμ

ν −
(K + K̃)μ(K + K̃)ν

K ⋅ K̃ + K̃2
+ 2

KμK̃ν

K̃2
→ Λμ

νK̃ν = Kμ

• Before splitting: • After splitting:

[Catani, Seymour ’97]
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Alaric at the LHC — jets
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FIG. 8. Transverse momentum spectrum of inclusive jets in di↵erent rapidity regions in proton-proton collisions at a center of
mass energy of 13 TeV. Alaric predictions compared to data measured by CMS [113]. The left plot shows the full distributions
while the panels on the right are the ratio to data.

must satisfy a rapidity requirement of |y| < 2.8. The comparison of the cross sections for inclusive jet is presented
in Fig. 9, starting from Njet = 2 and going up to Njet = 6. The Alaric predictions slightly overestimate the central
value of the overall cross section for lower multiplicities and tend to drop o↵ somewhat faster for higher jet rates
than seen in data. However, the predictions are consistent with the data within the statistical uncertainties over the
full range. The ratio plot in the middle of the upper left panel of Fig. 9 shows that the central value of the 3-jet
rate (although within the data uncertainty) is overestimated slightly more than the inclusive 2-jet rate. This e↵ect
is echoed in the bottom of the upper left panel, where we plot the ratios of inclusive Njet versus Njet � 1 rate. In
the upper right panel of Fig. 9 we compare to data for the ratio of the 3- to 2-jet rate, di↵erential in the transverse
momentum of the leading jet, with di↵erent minimal requirements on the hardness of the included jets. We can see
that the relative enhancement is mostly constant over the full range of leading jet p?. A similar dataset is available

casting the 3-to-2-jet ratio as a function of the scalar sum of the transverse momenta of the two leading jets, H
(2)
T ,

or all jets, HT . We compare with 7 TeV data from ATLAS [116], binned in H
(2)
T in the lower left panel of Fig. 9,

while the lower right plot compares the shower with a similar measurement by the CMS collaboration [117] binned
in HT . The CMS measurement, likewise performed at

p
s = 7 TeV, uses anti-kt jets with an radius of R = 0.5 and

requires a transverse momentum of at least p
jets
? > 50 GeV. The Alaric predictions reproduce the data remarkably

well, with practically no discrepancy to either ATLAS or CMS data within the uncertainty of the measurements. This
emphasizes that the Alaric algorithm can predict jet multiplicities and the 2-to-3 jet rate with excellent quality from
the parton shower alone.

We now turn to more di↵erential measurements of jet properties. The upper panel of Fig. 10 shows the transverse
momentum spectra of the four leading jets (according to their p?), as predicted by Alaric, and compares the results
to 7 TeV measurements from ATLAS [116], providing data for transverse momenta of the jets between 90 GeV and
up to 800 GeV for the leading and sub-leading jet(s). The data are also available di↵erential in the HT observable,
in the range 180 GeV < HT < 1600 GeV, separately for events containing at least 2, 3 and 4 jets. The comparison in
the lower panel of Fig. 10 presents a similar picture as the transverse momentum data, the parton-shower result from
Alaric compares very well over the entire range and for all considered multiplicities. We again observe excellent
agreement between our results and experimental data, independent of the jet selection and over the full range of
transverse momentum studied.
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FIG. 9. Inclusive jet multiplicity in inclusive jet production at
p
s = 7 TeV (upper left panel) with cross sections (top), the

ratio of simulation and data (middle) and ratios between Njet to Njet � 1 jet rate (bottom). The Njet = 3 to Njet = 2 rates
(right) di↵erential in the transverse momentum of the leading jet (upper right panel); both sets of data are taken from [116].
Ratio of inclusive 3 jet over 2 jet rate R32 at

p
s = 7 TeV, as predicted by Alaric and compared to measurements from

ATLAS [116] (lower left) and CMS [117] (lower right).

While so far we have considered the transverse momenta and multiplicity distributions of leading jets in the events,
we next analyze a class of observables sensitive to additional radiation in the event. To this end we consider non-
global observables called gap fractions, i.e. the fraction of events with no jets harder than a cuto↵ Q0 in the rapidity
interval of size �y between the two leading jets of a dijet system. We compare our results to data measured by the
ATLAS experiment [118] at

p
s = 7 TeV in Fig. 11. This analysis uses anti-kt jets with a radius of R = 0.6, and the

measurement is presented in several �y bins starting from 0�y < 1 ranging up to 7 < �y < 8. We observe excellent
agreement of the data at larger Q0 for the full range of �y. Only for the smallest Q0 values we find a slight excess of
our parton-shower predictions over the data.

Finally, we highlight Alaric’s performance in describing the intra-jet dynamics by presenting a comparison to a
jet substructure observable, in Fig. 12. The CMS collaboration has measured several variants of angularities [119]
in dijet events at 13 TeV. This measurement has been studied extensively using Sherpa in the past [120, 121]. For
brevity we restrict ourselves to showcasing the case of the so-called Les Houches angularity [122, 123] measured on
charged particles in anti-kt jets with radius R = 0.8. We observe a similar level of agreement to the data as these
earlier studies, describing the general trend of the data but tentatively producing somewhat narrower distributions
than seen in data.

• satisfactory description of inclusive and dijet 
events 


• transverse momentum spectrum of leading jet 
and ratio 3-to-2 jet rate
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FIG. 12. Les Houches angularity as measured by CMS [119] at
→
s = 13 TeV, on the more central (left) and more forward

(right) of the two leading jets in dijet events.

[Höche, Krauss, DR ’24]
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Beyond (leading) logarithmic accuracy
• So far, LL picture with significant use of NLL 
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• collinear splitting functions, CMW scheme,…


•  formalisation towards NLL/NNLL 
accuracy


• and beyond


• recoil scheme and implied integration 
boundaries


•  subleading effect play a significant role in 
phenomenological successful parton 
showers, more systematic understanding 
desirable, see also [Höche, Siegert, DR ’17]
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FIG. 6. Comparison of pure NLL resummation and plain DGLAP parton shower, e↵ects of approximating the observable
compared to exact calculation using four-momenta and evolution in dipole-kT .
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FIG. 7. Comparison between plain DGLAP parton shower ordered in ⇠ to DGLAP parton shower ordered in dipole-kT and
dipole shower with and without gluon splitting.

the measurable range at LEP energies, the predictions for FC1 also agree fairly well between the dipole-shower and
the analytic result.

Figure 8 displays a cross-check on the logarithmic terms implemented by the dipole shower as compared to the
parton shower and the analytic result. We extract R(kT /Q) for a fixed value of the strong coupling, ↵s = 0.118, using
the technique described in [38]. The slope of the distribution corresponds to the leading logarithm, while the o↵set
of the analytic result corresponds to the next-to-leading logarithm. Any parton- or dipole-shower prediction must
approach the analytic result as kT ! 0, which is verified by the convergence of the predictions at small kT .

VI. CONCLUSIONS

We have performed a detailed comparison between pure NLL resummation and parton showers for additive observ-
ables in e+e� annihilation to hadrons. We have isolated their di↵erences, which can broadly be classified as related
to probability or momentum conservation. While a di↵erent treatment of these e↵ects leads to formally subleading
corrections on the resummed prediction, it can have a numerically sizable impact (20% or more) in the region where
experimental measurements are performed. Similar e↵ects can reasonably be expected to arise in other observables,
as well as in processes with hadronic initial states and with a more complicated color structure at the Born level.
When comparing analytic resummation to parton showers it should be kept in mind that such di↵erences may exist,
in which case they should be taken into account as a systematic uncertainty. We have shown in a simple scenario
that the di↵erences can be assessed quantitatively by casting analytic resummation into a Markovian Monte-Carlo
simulation and introducing momentum and probability conservation. Conversely, parton showers can be modified to
violate momentum and probability conservation to reproduce pure NLL resummation. From the practical point of
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Collinear Splitting Functions
• Calculate for example g → qq̄

2

II. SPLITTING FUNCTIONS

The precise form of the splitting functions is one of the main systematic uncertainties in any parton-shower sim-
ulation. Stringent criteria exist only for the leading terms in gluon energy in the soft gluon limit, and for the
leading terms in transverse momentum in the collinear limit. These terms are determined by the known soft [83]
and collinear [84–89] factorization properties of QCD amplitudes. It is often assumed that away from the limits, the
splitting function can be used as is, without the need to account for the precise definition of the splitting variable.
While it is certainly true that changes in its definition only induce sub-leading corrections (of higher power in the
soft or collinear expansion parameter), the precise definition of the splitting kernels plays an important role and can
be used to capture non-leading e↵ects. A prominent example is the sub-leading power correction to the soft splitting
function [90–92], which originates in classical radiative e↵ects [93] and extends the naive soft limit to a physically
more meaningful result. Corrections of this type should clearly be included due to their importance for the physics
performance of the Monte-Carlo simulation. A similarly important point is that the collinear splitting functions can
be computed as o↵-shell matrix elements in a physical gauge [94], which implies that they contain information on the
structure of QCD amplitudes beyond the collinear limit. If this structure is to be retained, it is necessary that the
splitting functions be evaluated with the exact same definition of splitting variable that was used in their derivation.
A change in the kinematics parametrization must lead to identical physics predictions, but it may require a di↵erent
form of the splitting functions, including power suppressed terms. In the following, we will recall how to derive the
collinear splitting functions, using the algorithm of [94]. In Secs. III A and III B we will then determine their correct
arguments in terms of the kinematical parameters used in the parton-shower.

A. Purely collinear splitting functions

If two partons, i and j, of an n-parton QCD amplitude become collinear, the squared amplitude factorizes as

nh1, . . . , n|1, . . . , nin =
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where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The P

��0

ab (z) are the spin-dependent DGLAP splitting functions, which depend on the momentum
fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [84–89].

These splitting functions can be derived using the following Sudakov parametrization of the momenta of the splitting
products
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Equation (2) implies that we can compute the light-cone momentum fractions, zi and zj as
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. (3)

The tree-level g ! qq̄ and g ! gg collinear splitting functions are obtained by projecting the O(↵s) expression
for the discontinuity of the gluon propagator onto the physical degrees of freedom of the gluon field, using the
polarization sum in a physical gauge [94]. Gauge invariance of the underlying Born matrix element and the relation
k
2
t = �2pipj zizj , derived from Eq. (2), result in the familiar expressions
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The spin-averaged quark splitting function in the collinear limit can be obtained by projecting the vertex function
onto the collinear direction [94], leading to

Pqq(pi, pj , n̄) = CF
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. (5)
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assume Sudakov decomposition like
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Born amplitude. This e↵ect can be analyzed more e�ciently with the help of soft emission theorems [74–83]. The
feature is independent of the gluon polarization and also exists for o↵-shell gluon emission. In particular, we find the
gluon-spin dependent quark-to-quark splitting tensor in axial gauge
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Its scalar and purely fermionic components are given by
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The scalar component is not suppressed by z1, as could naively be expected by analyzing the contribution from
squared scalar emission vertices alone.

2. Gluon initial state

The Feynman diagrams leading to the tree-level g ! qq̄ and g ! gg splitting tensors are shown in Figs. 1(b)
and (c), respectively. The algebraic expressions are obtained from Eq. (20) as follows [15].
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where �µ⌫⇢(p, q)implements the Lorentz structure of the three-gluon vertex, and where the Lorentz indices ↵ and �

refer to the final-state gluon with momentum pj , while the indices µ and ⌫ refer to the initial-state gluon. Computing
the gluon-to-quark splitting tensor is straightforward, and we obtain
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Using the mapping of Sec. A 1 with ↵ = 1, taking the collinear limit, and summing over quark spins, we can write
Eq. (28) in the familiar form of the spin-dependent DGLAP splitting kernel
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The computation of the gluon-to-gluon splitting tensor is aided by the observation that any function multiplying this
object must be symmetric in the Lorentz indices µ and ⌫. It is known that, in the on-shell case, this causes all interfer-
ences between the three components of �µ⌫⇢ to vanish [84]. In the following, we derive the corresponding expression
including some of the o↵-shell e↵ects needed in Sec. IVD. We assume that p2

i
= 0, which is su�cient to compute all fac-

torizable components of the three-parton splitting functions. In this case, the relation d
µ⇢(pi, n̄)d⌫⇢(pi, n̄) = d

µ⌫(pi, n̄)
can be exploited to factorize the triple-gluon vertex functions in Eq. (27). We separate the resulting splitting tensor
into a symmetric and an interference part
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The symmetric component is given by the sum of squared scalar emission and decay vertices
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(31)

The interference component is better understood by contracting P
µ⌫,��

g!g,(i)(pi, pj) with the polarization tensors for the

decay of gluon j. The definitions in Eqs. (19) lead to
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+ . . . , (32)
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Born amplitude. This e↵ect can be analyzed more e�ciently with the help of soft emission theorems [74–83]. The
feature is independent of the gluon polarization and also exists for o↵-shell gluon emission. In particular, we find the
gluon-spin dependent quark-to-quark splitting tensor in axial gauge
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Its scalar and purely fermionic components are given by
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The scalar component is not suppressed by z1, as could naively be expected by analyzing the contribution from
squared scalar emission vertices alone.

2. Gluon initial state

The Feynman diagrams leading to the tree-level g ! qq̄ and g ! gg splitting tensors are shown in Figs. 1(b)
and (c), respectively. The algebraic expressions are obtained from Eq. (20) as follows [15].
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where �µ⌫⇢(p, q)implements the Lorentz structure of the three-gluon vertex, and where the Lorentz indices ↵ and �

refer to the final-state gluon with momentum pj , while the indices µ and ⌫ refer to the initial-state gluon. Computing
the gluon-to-quark splitting tensor is straightforward, and we obtain
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Using the mapping of Sec. A 1 with ↵ = 1, taking the collinear limit, and summing over quark spins, we can write
Eq. (28) in the familiar form of the spin-dependent DGLAP splitting kernel
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The computation of the gluon-to-gluon splitting tensor is aided by the observation that any function multiplying this
object must be symmetric in the Lorentz indices µ and ⌫. It is known that, in the on-shell case, this causes all interfer-
ences between the three components of �µ⌫⇢ to vanish [84]. In the following, we derive the corresponding expression
including some of the o↵-shell e↵ects needed in Sec. IVD. We assume that p2

i
= 0, which is su�cient to compute all fac-
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can be exploited to factorize the triple-gluon vertex functions in Eq. (27). We separate the resulting splitting tensor
into a symmetric and an interference part
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The symmetric component is given by the sum of squared scalar emission and decay vertices
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The interference component is better understood by contracting P
µ⌫,��

g!g,(i)(pi, pj) with the polarization tensors for the

decay of gluon j. The definitions in Eqs. (19) lead to
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By summing over all partitions and relabeling gluon momenta, we can reduce this expression to the simple form
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(9)

We have defined F
c

ab
= if

acb to make the radiation pattern explicit. The quark-induced contribution to the gluon
current, J̄µ, is given by
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(10)

We use the identity {/p, /n}/(2pn) = 1, with n an auxiliary vector, to rewrite this in the following form
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Using �
µ
/n+ /n�

µ = 2nµ, and working in an axial gauge (see the discussion in Sec. II C), this expression simplifies to
a purely magnetic interaction term. The complete gluon current then reads
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(12)

The scalar parts of Eq. (6) and (12) are similar to the eikonal interaction Hamiltonians obtained, for example in [43, 44],
but they include e↵ects of kinematical recoil, which is important when computing higher-point splitting functions.

C. Origin of infrared singularities

Before we discuss the factorization properties of amplitudes, we will comment on the gauge choices for our calcula-
tions. We employ the background field method [35–41], which allows the usage of separate gauges for tree-level and
one-loop calculations. In the one-loop case, we simplify the computations by using the Feynman gauge and including
ghosts. To compute tree-level expressions, we use an axial gauge instead, because it benefits from being ghost free [53–
57]. This is a consequence of the fact that axial gauges encode only the physical degrees of freedom [27–34, 58]. The
corresponding polarization tensor,

d
µ⌫(p, n) = �g

µ⌫ +
p
µ
n
⌫ + p

⌫
n
µ

pn
�

n
2
p
µ
p
⌫

(pn)2
, (13)

polarisation tensor:
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II. SPLITTING FUNCTIONS

The precise form of the splitting functions is one of the main systematic uncertainties in any parton-shower sim-
ulation. Stringent criteria exist only for the leading terms in gluon energy in the soft gluon limit, and for the
leading terms in transverse momentum in the collinear limit. These terms are determined by the known soft [83]
and collinear [84–89] factorization properties of QCD amplitudes. It is often assumed that away from the limits, the
splitting function can be used as is, without the need to account for the precise definition of the splitting variable.
While it is certainly true that changes in its definition only induce sub-leading corrections (of higher power in the
soft or collinear expansion parameter), the precise definition of the splitting kernels plays an important role and can
be used to capture non-leading e↵ects. A prominent example is the sub-leading power correction to the soft splitting
function [90–92], which originates in classical radiative e↵ects [93] and extends the naive soft limit to a physically
more meaningful result. Corrections of this type should clearly be included due to their importance for the physics
performance of the Monte-Carlo simulation. A similarly important point is that the collinear splitting functions can
be computed as o↵-shell matrix elements in a physical gauge [94], which implies that they contain information on the
structure of QCD amplitudes beyond the collinear limit. If this structure is to be retained, it is necessary that the
splitting functions be evaluated with the exact same definition of splitting variable that was used in their derivation.
A change in the kinematics parametrization must lead to identical physics predictions, but it may require a di↵erent
form of the splitting functions, including power suppressed terms. In the following, we will recall how to derive the
collinear splitting functions, using the algorithm of [94]. In Secs. III A and III B we will then determine their correct
arguments in terms of the kinematical parameters used in the parton-shower.

A. Purely collinear splitting functions

If two partons, i and j, of an n-parton QCD amplitude become collinear, the squared amplitude factorizes as

nh1, . . . , n|1, . . . , nin =
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E

n�1
, (1)

where the notation i\ indicates that parton i is removed from the original amplitude, and where (ij) is the progenitor
of partons i and j. The P

��0

ab (z) are the spin-dependent DGLAP splitting functions, which depend on the momentum
fraction z of parton i with respect to the mother parton, (ij), and on the helicities � [84–89].

These splitting functions can be derived using the following Sudakov parametrization of the momenta of the splitting
products
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In this context, p̂
µ
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µ
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t .

Equation (2) implies that we can compute the light-cone momentum fractions, zi and zj as

zi =
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pij n̄
, and zj =

pj n̄

pij n̄
. (3)

The tree-level g ! qq̄ and g ! gg collinear splitting functions are obtained by projecting the O(↵s) expression
for the discontinuity of the gluon propagator onto the physical degrees of freedom of the gluon field, using the
polarization sum in a physical gauge [94]. Gauge invariance of the underlying Born matrix element and the relation
k
2
t = �2pipj zizj , derived from Eq. (2), result in the familiar expressions
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(4)

The spin-averaged quark splitting function in the collinear limit can be obtained by projecting the vertex function
onto the collinear direction [94], leading to

Pqq(pi, pj , n̄) = CF


2zi

zj
+ (1 � ")(1 � zi)

�
. (5)

3

We define the di↵erence of the full splitting functions of Eqs. (4) and (5) and their eikonal limit as the purely collinear
splitting function, Pk(pi, pj). Using the known spin dependence of the quark splitting function, we obtain the following
spin-dependent and spin-averaged expressions for final-state splittings (denoted by a superscript (F ))

P
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At this point we would like to stress that zi and zj depend on the precise form of the momentum mapping, and
that they are not necessarily identical to the parton-shower splitting variables z and 1 � z. This has implications in
particular for the splitting functions in initial-state evolution and will be discussed in Secs. IIIA and III B.

Crossing parton i into the initial state, we obtain the following collinear factorization formula
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where x = 1/z is the momentum fraction of parton (ij) with respect to the initial-state parton i. Equation (1) is
obtained from Eq. (1) via the crossing relation Pab(1/x) = �Pab(x)/x [85, 95]. The splitting functions P

��0

ab (x) are
therefore determined by Eqs. (4) and (5). However, the matching to the soft radiation pattern di↵ers for initial-state
splittings, because an initial-state particle of vanishing energy will lead to a vanishing cross section (see for example
Sec.5.4 in [96]). This leads to the following expressions for the flavor-diagonal splitting functions in the initial state
(denoted by a superscript (I))
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All other purely collinear splitting functions remain the same. We have simplified the notation by defining xi = 1/zi

and xj = �xizj . We stress again that di↵erences in the purely collinear components of the spin-averaged DGLAP
splitting functions can arise from the fact that xi may not be equal to x, where x is the initial-state parton shower
splitting variable. In practical applications, this typically leads to a suppression of 1/x enhanced parton splittings at
large transverse momenta. We will return to this question in Secs. IIIA and III B, see in particular the discussion
following Eq. (20).

B. Soft limit and soft-collinear matching

In the limit that gluon j becomes soft, the squared amplitude factorizes as [83]
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where Ti and Tk are the color insertion operators defined in [83, 96]. In the Alaric parton-shower algorithm [63],
the eikonal factor wik,j is split into an angular radiator Wik,j and the gluon energy according to wik,j = Wik,j/E

2
j .

The angular radiator function
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is matched to the collinear splitting functions by partial fractioning:
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In the collinear limit for partons i and j, the eikonal factor wik,j can be identified with the eikonal term of the
DGLAP splitting functions Paa(z). Matching the soft to the collinear splitting functions in the improved large-Nc

limit is achieved by replacing
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for the discontinuity of the gluon propagator onto the physical degrees of freedom of the gluon field, using the
polarization sum in a physical gauge [94]. Gauge invariance of the underlying Born matrix element and the relation
k
2
t = �2pipj zizj , derived from Eq. (2), result in the familiar expressions
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The spin-averaged quark splitting function in the collinear limit can be obtained by projecting the vertex function
onto the collinear direction [94], leading to

Pqq(pi, pj , n̄) = CF


2zi

zj
+ (1 � ")(1 � zi)

�
. (5)
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FIG. 1. Sketch of the momentum mapping for soft radiation and initial-state splittings. All momenta are considered outgoing.
Note that pk only acts as a reference for the definition of the azimuthal angle �. See the main text for details.

where the sum runs over all color-connected partons, and Nspec stands for the number of color spectators. While
initial-state parton evolution must respect Gribov-Lipatov reciprocity [85, 95], we need to take into account that the
amplitude cannot develop a soft singularity in the initial-state momentum. Therefore,

P
(I)
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2pipj x
! �i(ij)

T2
ij
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k2specs

W̄
i
ik,j

E
2
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+
P

(I)
i(ij) k(pi, pj , n̄)

2pipj x
. (13)

The two soft contributions to the gluon splitting function are treated as two di↵erent radiators [54]. The soft matching
introduces a dependence of the splitting functions on the color spectators, k, and their momenta define directions
independent of p̂ij [63].

III. MOMENTUM MAPPING

Parton shower algorithms are based on the notion of adding additional partons to an already existing ensemble of
particles, while maintaining four-momentum conservation and on-shell conditions. This procedure requires a method
to map the momenta of the Born process to a kinematical configuration after emission. The mappings are linked
to the factorization of the di↵erential phase-space element for a multi-parton configuration. Collinear safety a basic
requirement for their construction. In addition, a mapping is NLL-safe if it preserves the topological features of
previous radiation [56, 57]. Since the momentum mapping in most modern parton showers has been identified as the
main stumbling block to achieving next-to-leading logarithmic precision, we will begin the description of Alaric’s
initial-state evolution algorithm by discussing the kinematics.

A. Soft radiation kinematics

This section details the algorithm for the construction of momenta in soft emissions. The momentum mapping
is sketched in Fig. 1. We identify the splitter momentum, p̃i, and define a recoil momentum, K̃. In contrast
to conventional dipole-like parton showers where the recoil momentum is usually given by the color spectator, in
Alaric this momentum can be chosen freely, with the condition that it must provide a hard scale. In most practical
applications we will define K̃ as the sum of all final-state momenta (in the case of final-state branchings also including
the momentum of the splitting particle). Together, the momenta K̃ and p̃i define the reference frame of the splitting.
The momentum of the color spectator, p̃k, defines an additional direction, and provides the reference for the azimuthal
angle, �. To obtain the momenta after emission, the emitter is scaled by a factor z, and the emitted momentum, pj ,

is constructed with transverse momentum component ~kT and suitable light-cone momenta. The recoil is absorbed by
all particles that constitute the recoil momentum K̃. To parametrize the splitting kinematics, we make use of some
of the notation in [63, 96], in particular

v =
pipj

p̃iK̃
and z =

piK̃

p̃iK̃
. (14)

The momentum mapping for emitter p̃i and recoil momentum K̃ is fixed by

pi = z p̃i ,

pj = (1 � z) p̃i + v
�
K̃ � (1 � z + 2) p̃i

�
� k? ,

K = K̃ � v
�
K̃ � (1 � z + 2) p̃i

�
+ k? ,

(15)
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FIG. 2. Sketch of the momentum mapping for collinear radiation. All momenta are considered outgoing. Note that, again, pk
only acts as a reference for the definition of the azimuthal angle �. See the main text for details.

with the absolute value of the transverse momentum given by

k2
? = v(1 � v)(1 � z) 2p̃iK̃ � v

2
K̃

2
. (16)

For initial-state splitters, the energy fraction z is replaced by 1/x. If the momentum K̃ is composed of the two
initial-state momenta, all final-state momenta are subjected to a Lorentz transformation

p
µ
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2K
µ
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K̃2
. (17)

If the momentum K̃ is composed of final-state momenta, those momenta are subjected to a Lorentz transformation
p
µ
l ! ⇤µ

⌫(K̃, K) p
⌫
l , with ⇤µ

⌫(K̃, K) given by Eq. (17).
It remains to determine the variables zi and zj in Sec. II, which are needed to evaluate the purely collinear splitting

functions. Expanding Eq. (15) in terms of the large forward light-cone momentum, p̂
µ
ij = p

µ
ij � p

2
ij/(2pij n̄)n̄µ, the

small transverse components, and the very small anti-collinear components, we obtain

pi =
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(18)

Having obtained an expression equivalent to Eq. (2), it is apparent that the momentum fractions that appear in the
purely collinear splitting functions, Eqs. (6) and (8) are given by

zi =
z

1 � v(1 � z + )
, zj = 1 �

z

1 � v(1 � z + )
. (19)

In initial-state evolution, the replacements z ! 1/x, zi ! 1/xi and zj ! �xj/xi change Eq. (19) to

xi = x + v � v x (1 + ) , xj = 1 � x � v + v x (1 + ) . (20)

In addition, the transverse momentum k
µ
t appearing in the Sudakov decomposition Eq. (2), and hence in the spin-

dependent splitting functions in Sec. II, is expressed in terms of the radiation kinematics variables appearing in
Eq. (15) as zi k

µ
? [96]. Note that for initial-state emissions with the spectator being the complete final state, Eq. (20)

simplifies to xi = x + v and xj = 1 � x � v. This relation has been used in the context of a Catani-Seymour dipole
shower in Refs. [81, 82] to obtain an improved approximation of the splitting functions and generally leads to a
reduction of emission probabilities from terms in the splitting functions that are proportional to 1/xi.

B. Collinear splitting kinematics

As discussed in Sec. (II), collinear parton evolution is easier understood in a phase-space parametrization where the
splitting products compensate each others transverse recoil with respect to the direction of the progenitor. For the
implementation of the purely collinear components of final-state splitting functions we therefore choose a kinematics
mapping that is closely related to [60, 76]. It has been shown [60] that this type of mapping satisfies the criteria for
NLL precision if it is applied to the purely collinear splitting functions only. The proof rests on similar arguments as
the proof of accuracy for the radiation kinematics of Sec. III A [63].
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Having obtained an expression equivalent to Eq. (2), it is apparent that the momentum fractions that appear in the
purely collinear splitting functions, Eqs. (6) and (8) are given by
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In initial-state evolution, the replacements z ! 1/x, zi ! 1/xi and zj ! �xj/xi change Eq. (19) to

xi = x + v � v x (1 + ) , xj = 1 � x � v + v x (1 + ) . (20)

In addition, the transverse momentum k
µ
t appearing in the Sudakov decomposition Eq. (2), and hence in the spin-

dependent splitting functions in Sec. II, is expressed in terms of the radiation kinematics variables appearing in
Eq. (15) as zi k

µ
? [96]. Note that for initial-state emissions with the spectator being the complete final state, Eq. (20)

simplifies to xi = x + v and xj = 1 � x � v. This relation has been used in the context of a Catani-Seymour dipole
shower in Refs. [81, 82] to obtain an improved approximation of the splitting functions and generally leads to a
reduction of emission probabilities from terms in the splitting functions that are proportional to 1/xi.

B. Collinear splitting kinematics

As discussed in Sec. (II), collinear parton evolution is easier understood in a phase-space parametrization where the
splitting products compensate each others transverse recoil with respect to the direction of the progenitor. For the
implementation of the purely collinear components of final-state splitting functions we therefore choose a kinematics
mapping that is closely related to [60, 76]. It has been shown [60] that this type of mapping satisfies the criteria for
NLL precision if it is applied to the purely collinear splitting functions only. The proof rests on similar arguments as
the proof of accuracy for the radiation kinematics of Sec. III A [63].
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For initial-state splitters, the energy fraction z is replaced by 1/x. If the momentum K̃ is composed of the two
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Having obtained an expression equivalent to Eq. (2), it is apparent that the momentum fractions that appear in the
purely collinear splitting functions, Eqs. (6) and (8) are given by
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In initial-state evolution, the replacements z ! 1/x, zi ! 1/xi and zj ! �xj/xi change Eq. (19) to

xi = x + v � v x (1 + ) , xj = 1 � x � v + v x (1 + ) . (20)

In addition, the transverse momentum k
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t appearing in the Sudakov decomposition Eq. (2), and hence in the spin-

dependent splitting functions in Sec. II, is expressed in terms of the radiation kinematics variables appearing in
Eq. (15) as zi k

µ
? [96]. Note that for initial-state emissions with the spectator being the complete final state, Eq. (20)

simplifies to xi = x + v and xj = 1 � x � v. This relation has been used in the context of a Catani-Seymour dipole
shower in Refs. [81, 82] to obtain an improved approximation of the splitting functions and generally leads to a
reduction of emission probabilities from terms in the splitting functions that are proportional to 1/xi.

B. Collinear splitting kinematics

As discussed in Sec. (II), collinear parton evolution is easier understood in a phase-space parametrization where the
splitting products compensate each others transverse recoil with respect to the direction of the progenitor. For the
implementation of the purely collinear components of final-state splitting functions we therefore choose a kinematics
mapping that is closely related to [60, 76]. It has been shown [60] that this type of mapping satisfies the criteria for
NLL precision if it is applied to the purely collinear splitting functions only. The proof rests on similar arguments as
the proof of accuracy for the radiation kinematics of Sec. III A [63].
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Alaric — subleading effects in Z+jets
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FIG. 4. Systematic uncertainties of parton-shower predictions from Alaric due to di↵erent maximal number, nj,max of jet
from leading-order matrix elements (left) and due to di↵erent choices of the recoil momentum K̃ (right). See Fig. 3 and the
main text for details.
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FIG. 5. Alaric ME+PS merged predictions in comparison to ATLAS data from [107].

within a cone of radius R = 0.1 . The uncertainty band in Fig. 3 corresponds to the variation of the merging cut
between 5 GeV and 20 GeV. In general, we find agreement with experimental data to the level that it can be expected
from a parton-shower simulation without NLO multi-jet merging, see for example [28]. Apart from very forward
regions in Z-boson rapidity, the deviations from data reach at most five to ten percent.

We include up to three jets in this simulation, but we note that the prediction stabilizes upon including the second
jet, cf. the left panel of Fig. 4. There, we display a variation of results with the highest jet multiplicity, nj max, the
maximal number of jets described by fixed-order calculations in the multi-jet merging. We find that with increasing
nj max the high transverse momentum region is better described by the simulation. This e↵ect has been discussed in
great detail in the original literature on multi-jet merging [21–24]. The saturation of this e↵ect at nj max = 2 can be
understood by noticing that the addition of a first and second jet adds new partonic initial state channels.

The right panel of Fig. 4 shows some of the systematic uncertainties associated with the parton-shower prediction
itself. We compare two di↵erent definitions of K, one where the recoil is absorbed by the Drell-Yan lepton pair (labeled
K = pz), and one where the recoil is absorbed by the complete final state (our default choice, labeled K =

P
p).

While the first definition leads to a somewhat better description of the transverse momentum spectrum in the bulk
of the distribution, it fails in the high-pT tails. This is expected, because in the high transverse momentum region,
the invariant mass of the Drell-Yan lepton pair no longer provides the highest scale in the process. We also compare
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FIG. 7. Multi-jet merged predictions from Alaric in comparison to CMS measurements [109]. See the main text for details.

B. Inclusive jet and di-jet production

In this sub-section we compare results from a pure parton-shower simulation, without applying any multi-jet merg-
ing, with Alaric against inclusive jet and dijet measurements from the ATLAS and CMS collaborations. The
renormalization and factorization scales are chosen as µR = µF = HT /4, where HT denotes the scalar sum of the
final state transverse momenta. The resummation scale (i.e. the parton shower starting scale) is defined as µQ = p?,
with p? the transverse momentum of the leading jet. We compare to data measured at the LHC at

p
s = 7 TeV

and
p

s = 13 TeV. Hadronization corrections are included using the Lund model via an interface to Pythia 8 [114].
We use the string fragmentation parameters a = 0.4, b = 0.36 and � = 0.3. To simulate the underlying event we
rely Sherpa’s default module [101], based on the Sjöstrand–Zijl multiple-parton interaction (MPI) model [115]. It
is worth noting that so far we have not produced a dedicated tune of hadronization or underlying event parameters
specifically for the Alaric parton shower.

We start our discussion by firstly comparing, in Fig. 8, Alaric results to inclusive jet rates in dependence on the
transverse momentum of the leading jet, in several bins of the leading jet rapidity. The data were taken by the CMS
collaboration at

p
s = 13 TeV [113] and reach energy scales up to p? ⇠ 2 TeV and rapidity values of up to |y| = 4.7.

Our predictions are in good agreement with data, which motivates us to investigate the details of the radiation pattern
in more detail.

We continue by comparing to the inclusive rates of jets produced in the shower to data measured by ATLAS [116]
at

p
s = 7 TeV. The analysis constructs anti-kt jets with a radius parameter of R = 0.4, and requires at least one

jet with a transverse momentum of p? > 80 GeV, while additional jets are required to have p? > 60 GeV. All jets
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Towards subleading effects for lepton colliders
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New Parton Showers - NLL accuracy
4

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

• typical claim based on accuracy of splitting 
functions etc.


• parton showers  NLL accurate if CMW scheme 
for strong coupling is used


• observation in [Dasgupta, Dreyer, Hamilton, Monni, Salam ’18]     

(PanScales collaboration):

• subtleties arise in distribution of recoil for 

subsequent emissions  phase space where 
accuracy is spoiled if soft gluon absorbs recoil


• + in colour assignment

• also: set of tests for shower accuracy [Dasgupta, 

Dreyer, Hamilton, Monni, Salam ’20]   

∼

⇒



17

New Parton Showers - NLL accuracy
• Several solutions/re-evaluations of parton shower concepts:

• [Dasgupta, Dreyer, Hamilton,Monni, Salam, Soyez ’20], [vanBeekveld, Ferrario Ravasio, Hamilton, 

Salam, Soto-Ontoso,Soyez ’22]


• partitioning of splitting functions and appropriate choice of evolution 
variable can lead to NLL accurate shower for local and global recoil 
strategies 


• [Forshaw, Holguin, Plätzer ’20]


• Connections between angular ordered and dipole showers

• [Nagy, Soper ’11]


• local transverse, global longitudinal recoil

• [Herren, Krauss, DR, Schönherr, Höche ’22]


• global recoil, enables analytic comparison to resummation and proof of NLL 
accuracy 


• [Preuss ’24]


• global recoil in antenna shower Vinca
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Compare: resummation e.g. in CAESAR
• factorisation of matrix elements in soft 

collinear limit well known


• how to extract NLL observable independent 
(i.e. without additional information)?


• method from [Banfi, Salam, Zanderighi ’05]: need 
explicit implementation of soft-collinear limit*:

kρ
t = ktρ

ηρ = η − ξ ln ρ
and assume

V(kρ
i ) = ρV(ki)

 numerically 

evaluate phase space

integrals  in this limit

→

ξ =
η

ηmax

( + , − ,kt) ∼ (kteη, kte−η, kt)

∼ (ρ, ρ, ρ)
∼ (1, ρ2, ρ)

* example assuming  for brevityV(kt, η) ∼ kt /Q

∼ (ρ1−ξ, ρ1+ξ, ρ)
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Effect of  recoil on accuracy
• question: do recoil effects indeed 

vanish in soft limit (i.e. )?* 
[Dasgupta,Dreyer,Hamilton,Monni,Salam ’18]


• consider situation where we first 
emit  from , then emit ,




• transverse momentum of  will be 

 as  


• but, relevant limit is                                
simultaneous rescaling

ρ → 0

p̃ij pa, pb pj

p̃ij → pi, pj

pi

ki
t ∼ kij

t + kj
t → kij

t
kj

t

ki
t

→ 0

3.1 Parton showers

Hence this violates the probability conserving interpretation of a unitary parton shower.

It is well known how to deal with this situation in principle [109, 110, 111], and the
method to do so will be reviewed for this particular situation in Section 4.1. From
the point of view of numerical efficiency, it is however often favourable to avoid the
corresponding negative weights. Most traditional parton showers do not have this
option implemented. For this reason, the default DGLAP based shower used here will
apply the restriction for the soft and collinear term, as shown in Equation (3.10). From
a formal point of view this corresponds to a correction that is suppressed by a power
of v and therefore is not relevant for logarithmic resummation.

3.1.2 Full shower
Conventional parton showers, as used in full fledged Monte Carlo simulations, include
more effects than discussed in the previous section even for the simple born process
of e+e� ! qq̄ considered here [13]. Further, modern parton showers often rely on a
different treatment of the soft double counting problem described above, which is to
factor the soft eikonal. Both will be described here briefly for completeness and as they
are used in the analysis in Section 5.2.

Full DGLAP Showers

Away from the strict soft limit, emissions will cause a recoil on the hard legs present
at born level. Monte Carlo simulations take this into account by generating the four
momenta after an emission according to a particular prescription, in the following
called recoil scheme. The prescription used later is the one given in [112]. This is, for
a parton ij with momentum p̃ij splitting into partons i and j with respective momenta
pi and pj , with a spectator absorbing the recoil k and changing its momentum from p̃k
to pk, the new momenta are assigned as follows:

pi = zp̃ij + (1� z)yp̃k + k? , (3.11)
pj = (1� z)p̃ij + zyp̃k � k? , (3.12)
pk = (1� y)p̃k . (3.13)

Here k? is a four momentum with k2
? = k2

T, the transverse momentum that that is
given in the parton shower in terms of the evolution variable and z.

The requirement that all momenta are on-shell, p2
i
= 0 = p2

j
, leads to a relation

between z, y and k2
T:

k2
T = z(1� z)yQ2 (3.14)

with Q2 the invariant mass of the emitting qq̄ dipole formed from emitter and spectator,
Q2 = 2p̃ij · p̃k.

33

p̃ij pj

Δki
t

ki
t

→
ρkj

t

ρki
t

= 𝒪(1)

* note: + further problems for   
colour assignment in 

multiple emissions
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Alaric - Analytic tracing of recoil effects

11

The vector Xµ will tend to zero in both the soft and the collinear limit, because it has no component along the
direction of the emitter momentum, p̃i. This implies in particular that for emissions o↵ the original hard partons, Xµ

will tend to zero, even in the hard collinear region, such that the Lorentz transformation vanishes. In terms of K̃µ

and Xµ, Eq. (25) takes the form

⇤µ

⌫
(K, K̃) = gµ

⌫
+ K̃µA⌫ +XµB⌫ , (55)

where

A⌫ = 2


(K̃ �X)⌫

(K̃ �X)2
�

(K̃ �X/2)⌫

(K̃ �X/2)2

�
, and B⌫ =

(K̃ �X/2)⌫

(K̃ �X/2)2
. (56)

Following Sec. 2.2.3 of [84], we now analyze the behavior of this change under the generalized rescaling of all emissions,
pl, according to Eq. (53). Note that the transverse momentum kt in this analysis is not the same as k? in Eq. (21).
It is instead given in terms of Lund plane coordinates, see Sec. 2 of [84] for details of these definitions. We can choose
to use the initial momenta of the hard quark and anti-quark (which are not subject to the rescaling) as reference
directions to define the Lund plane transverse momentum and rapidity, and work in their rest frame with the quark
(antiquark) momentum pointing along the positive (negative) z direction. In this frame, the longitudinal components
of the momenta pl scale as p̃0,3

l
⇠ ⇢(1�⇠l)/a, while the transverse components behave as p̃1,2

l
⇠ ⇢(1�⇠l)/a+⇠l/(a+b).

From Eq. (54) we deduce that all components of Xµ scale as the soft momenta p̃l in Eq. (53), because the component
of pj along the emitter momentum p̃i has been subtracted. This is a very important feature of our kinematics mapping.
We will now show that this mapping maintains the scaling properties, Eq. (53), of an arbitrary set of pre-existing
emissions in the ⇢ ! 0 limit.

First we take the ⇢ ! 0 limit of the coe�cients in Eq. (55). The leading contributions are given by

A⌫ ⇢!0
�! 2

K̃X

K̃2

K̃⌫

K̃2
�

X⌫

K̃2
, and B⌫ ⇢!0

�!
K̃⌫

K̃2
. (57)

The momentum shift of particle l under the Lorentz transformation is then given by

�pµ
l
= 2

K̃X

K̃2

p̃lK̃

K̃2
K̃µ

�
p̃lX

K̃2
K̃µ +

p̃lK̃

K̃2
Xµ . (58)

For color singlet decay or production processes we can work in the multipole center-of-mass frame. K̃ then only has
an energy component, which is not rescaled as ⇢ ! 0. Let us first assume that the emitter momentum, p̃i, is one of
the soft momenta.

The scaling of the scalar products in Eq. (58) is then given by 8

p̃lK̃ ⇠ ⇢(1�⇠l)/a ,

p̃lX ⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a .
(59)

The denominators in A⌫ and B⌫ do not scale with ⇢. With that we can derive the scaling of the change in each
component of pl and compare it to the scaling of the original components in p̃l.

p̃0
l
⇠ ⇢(1�⇠l)/a �p0

l
⇠ ⇢(1�⇠l)/aX0 + ⇢(2�⇠l�max(⇠i,⇠j))/aK̃0 + ⇢(1�⇠l)/aX0

⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a ,

p̃3
l
⇠ ⇢(1�⇠l)/a �p3

l
⇠ ⇢(1�⇠l)/aX3

⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a ,

p̃1,2
l

⇠ ⇢(1�b/(a+b)⇠l)/a �p1,2
l

⇠ ⇢(1�⇠l)/aX1,2
⇠ ⇢(2�⇠l�b/(a+b)max(⇠i,⇠j))/a .

(60)

The relative momentum shifts are

�p0,3
l

p0,3
l

⇠ ⇢(1�max(⇠i,⇠j))/a ,

�p1,2
l

p1,2
l

⇠ ⇢(1�⇠l�b/(a+b)(max(⇠i,⇠j)�⇠l))/a < ⇢(1�b/(a+b))(1�⇠l)/a .

(61)

8
Note that p̃lX has two contributions, one proportional to ⇢(2�(⇠l+max(⇠i,⇠j)))/a, and one proportional to ⇢(2�b/(a+b)(⇠l+max(⇠i,⇠j)))/a.

The first one dominates in all cases, because b/(a+ b) < 1. While b can be negative, infrared and collinear safety requires b > �a, a > 0.
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The vector Xµ will tend to zero in both the soft and the collinear limit, because it has no component along the
direction of the emitter momentum, p̃i. This implies in particular that for emissions o↵ the original hard partons, Xµ

will tend to zero, even in the hard collinear region, such that the Lorentz transformation vanishes. In terms of K̃µ

and Xµ, Eq. (25) takes the form
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(K, K̃) = gµ

⌫
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where

A⌫ = 2


(K̃ �X)⌫

(K̃ �X)2
�

(K̃ �X/2)⌫

(K̃ �X/2)2

�
, and B⌫ =

(K̃ �X/2)⌫
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Following Sec. 2.2.3 of [84], we now analyze the behavior of this change under the generalized rescaling of all emissions,
pl, according to Eq. (53). Note that the transverse momentum kt in this analysis is not the same as k? in Eq. (21).
It is instead given in terms of Lund plane coordinates, see Sec. 2 of [84] for details of these definitions. We can choose
to use the initial momenta of the hard quark and anti-quark (which are not subject to the rescaling) as reference
directions to define the Lund plane transverse momentum and rapidity, and work in their rest frame with the quark
(antiquark) momentum pointing along the positive (negative) z direction. In this frame, the longitudinal components
of the momenta pl scale as p̃0,3

l
⇠ ⇢(1�⇠l)/a, while the transverse components behave as p̃1,2

l
⇠ ⇢(1�⇠l)/a+⇠l/(a+b).

From Eq. (54) we deduce that all components of Xµ scale as the soft momenta p̃l in Eq. (53), because the component
of pj along the emitter momentum p̃i has been subtracted. This is a very important feature of our kinematics mapping.
We will now show that this mapping maintains the scaling properties, Eq. (53), of an arbitrary set of pre-existing
emissions in the ⇢ ! 0 limit.

First we take the ⇢ ! 0 limit of the coe�cients in Eq. (55). The leading contributions are given by

A⌫ ⇢!0
�! 2

K̃X

K̃2

K̃⌫

K̃2
�

X⌫

K̃2
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The momentum shift of particle l under the Lorentz transformation is then given by
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= 2

K̃X

K̃2

p̃lK̃

K̃2
K̃µ
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p̃lX

K̃2
K̃µ +

p̃lK̃

K̃2
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For color singlet decay or production processes we can work in the multipole center-of-mass frame. K̃ then only has
an energy component, which is not rescaled as ⇢ ! 0. Let us first assume that the emitter momentum, p̃i, is one of
the soft momenta.

The scaling of the scalar products in Eq. (58) is then given by 8

p̃lK̃ ⇠ ⇢(1�⇠l)/a ,

p̃lX ⇠ ⇢(2�⇠l�max(⇠i,⇠j))/a .
(59)

The denominators in A⌫ and B⌫ do not scale with ⇢. With that we can derive the scaling of the change in each
component of pl and compare it to the scaling of the original components in p̃l.

p̃0
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The relative momentum shifts are
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⇠ ⇢(1�max(⇠i,⇠j))/a ,
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l

p1,2
l

⇠ ⇢(1�⇠l�b/(a+b)(max(⇠i,⇠j)�⇠l))/a < ⇢(1�b/(a+b))(1�⇠l)/a .
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8
Note that p̃lX has two contributions, one proportional to ⇢(2�(⇠l+max(⇠i,⇠j)))/a, and one proportional to ⇢(2�b/(a+b)(⇠l+max(⇠i,⇠j)))/a.

The first one dominates in all cases, because b/(a+ b) < 1. While b can be negative, infrared and collinear safety requires b > �a, a > 0.

vanishes in soft limit

compare to   from local dipole scheme
Δkt

kt
∼ 𝒪(1)

work out  limit:ρ → 0

Δp0,3
l

p0,3
l

∼ ρ1−max(ξi,ξj)

Δp1,2
l

p1,2
l

∼ ρ(1−ξl)(max(ξi,ξj)−ξl)
apply to soft momentum :pl
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Alaric - Numerical validation I
• Limit  with  ofαs → 0 λ = αsL = const.

13
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FIG. 4: NLL test for various event shape observables. See the main text for details.

ΣShower

ΣNLL ∼ exp (fLL
Shower − Lg1(αn

s Ln))
× exp (fNLL

Shower − g2(αn
s Ln))

× exp (𝒪(αn+1
s Ln))

    if shower reproduces 

                LL, NLL logs
→ 1

• Observable: jet resolution  in Cambridge 
jet measure, only largest 
emission matters, check that additional 
shower emissions vanish  

y23
ℱ = 1 →
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FIG. 4: NLL test for various event shape observables. See the main text for details.
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FIG. 4: NLL test for various event shape observables. See the main text for details.
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FIG. 3: NLL test for � 12.

If ⇠l < 1 and max(⇠i, ⇠j) < 1, these changes vanish in the ⇢ ! 0 limit. The case of ⇠l = 1 and/or max(⇠i, ⇠j) = 1
corresponds to a phase-space region of measure zero and does therefore not need to be considered.

In the case where p̃i is one of the hard momenta, the leading terms in Eq. (54) cancel exactly, and the remaining
components of Xµ are transverse or anti-collinear, leading to a scaling with ⇢1/a and ⇢2/a, respectively, in Eq. (60).
This leads to the same conclusions as the case ⇠i = ⇠j = 0.

B. Numerical tests of kinematics mapping

In this section we present numerical tests of our new algorithm9. We follow the procedure outlined in [54] and
perform a scaling of the strong coupling, while keeping the variable � = ↵s ln v fixed, where v is an observable whose
single-emission contribution to a measurement can be parametrized in the form v(k) = (kt/Q)ae�b|⌘k|, see Eq. (47).
In particular we analyze the event shape observables thrust, T [87], jet broadening, BT [88], heavy jet mass, MH , and
the fractional energy correlators FC1�� [84] for � = 0 and 1/2. We also analyze the leading Lund plane declustering
scale in the Cambridge algorithm, y23, and the azimuthal angle between the two leading Lund plane declusterings,
� 12 [54].

Since the running of the strong coupling will not a↵ect the kinematics reconstruction, we keep ↵s constant in this
numerical test. In addition, we do not use the CMW scheme, and we work in the strict leading color approximation,
2CF = CA = 3. We find that this is su�cient to reproduce the dominant features of the Dire dipole shower algorithm
that were observed to break NLL precision in [53, 54]. Figure 3 shows the azimuthal angle separation � 12. The
predictions from Dire exhibit the same features as already shown in [54], and it can be seen that the deviation from
a flat � 12 distribution does not vanish as ↵s ! 0. In contrast, for the Alaric algorithm we observe increasingly
smaller deviations from a flat � 12 dependence, in agreement with NLL resummation.

Figure 4 displays the event shape observables and the leading Lund declustering scale for varying ↵s. In order to
test for a variety of possible e↵ects of NLL violation, we have chosen observables with di↵erent NLL contributions.
In addition, we test observables with b = 0 (

p
y23, BT and FC1), observables with b = 1/2 (FC1/2) and observables

with b = 1 (1 � T , MH). In each case we find that the deviation of the Alaric prediction from the NLL target
result (modified to account for constant ↵s, no CMW rescaling and leading color) decreases in size proportional to the
scaling in ↵s, as ↵s ! 0. At the same time, we observe large deviations of the Dire predictions from the target NLL
result. It is notable that the predictions from Alaric are flat with respect to the NLL result starting at fairly small
values of �� for most observables. For each prediction we have performed a fit to a linear function of ↵s in order to
extract the limit for ↵s ! 0. There are two noteworthy artefacts of this extrapolation: Firstly, there are bumps in
the extrapolated result at large values of �, which would not be present in the true ratio at any ↵s < 0.0025. Second,
the extrapolated result is smoother than the individual inputs, since the predictions at smaller ↵s are less contraining
due to their larger uncertainties. This concludes our tests of the kinematics mapping.

9
The PyPy code for these tests can be found at https://gitlab.com/shoeche/pyalaric.
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Pheno with NLL showers
4

FIG. 2. Test of NNLL accuracy of the PanGlobal (PGsdf
�=0)

shower for the cumulative distribution of the Cambridge y23

resolution variable, compared to known results for Z !
qq̄ [52] (left) and H ! gg [77] (right). The curves show the
di↵erence relative to NNLL for various subsets of ingredients.
Starting from the red curve, DS additionally includes double
soft contributions and 2-jet NLO matching; 3` includes 3-loop
running of ↵s and the Kresum

2 term. Including all e↵ects (blue
line) gives a result that is consistent with zero, i.e. in agree-
ment with NNLL.

FIG. 3. Summary of NNLL tests across observables and
shower variants. Results consistent with zero (shown in green)
are in agreement with NNLL. The observables correspond to
the event shapes used in Ref. [5] and they are grouped accord-
ing to the power (�obs) of their dependence on the emission
angle. All showers that include the corrections of this Letter
agree with NNLL.

Tests across a wider range of observables and shower
variants are shown in Fig. 3 for a fixed value of � =
↵s ln v = �0.4. With the drifts and all other contribu-
tions included, there is good agreement with the NNLL
predictions [45–52, 58, 61, 77].

Earlier work on NLL accuracy had found that the co-
e�cients of NLL violations in common showers tended
to be moderate for relatively inclusive observables like
event shapes [5]. In contrast, here we see that non-NNLL

FIG. 4. Results for the Thrust and Durham y23 [78] ob-
servables with the PanGlobal showers compared to ALEPH
data [79], using ↵s(MZ) = 0.118. The lower (middle) panel
shows the ratios of the NNLL (NLL) shower variants to data.

showers di↵er from NNLL accuracy with coe�cients of
order one. That suggests a potential non-negligible phe-
nomenological e↵ect.
Fig. 4 compares three PanGlobal showers with ALEPH

data [79] using Rivet v3 [80], illustrating the showers in
their NLL and NNLL variants, with ↵

ms
s (MZ) = 0.118 for

both. We use 2-jet NLO matching [74], and the NODS
colour scheme [6], which guarantees full-colour accuracy
in terms up to NLL for global event shapes. Our showers
are implemented in a pre-release of PanScales [81] v0.2.0,
interfaced to Pythia v8.311 [3] for hadronisation, with
non-perturbative parameters tuned to ALEPH [79, 82]
and L3 [83] data (starting from the Monash 13 tune [84],
cf. Ref. [72] § 5; the tune has only a modest impact on the
observables of Fig. 4). The impact of the NNLL terms is
significant and brings the showers into good agreement
with ALEPH data [79], both in terms of normalisation
and shape. Some caution is required in interpreting the
results: given that the logarithms are not particularly
large at LEP energies, NLO 3-jet corrections (not in-
cluded) may also play a significant role and should be
studied in future work. Furthermore, the PanGlobal
showers do not include finite quark-mass e↵ects. Still,
Fig. 4 suggests that NNLL terms have the potential to
resolve a long-standing issue in which a number of dipole
showers (including notably the Pythia 8 shower, but also
the PanGlobal NLL shower) required an anomalously
large value of ↵s(mZ) & 0.130 [84] to achieve agreement
with the data.
The parton showers developed here are expected to

achieve NNLL (leading-colour) accuracy also for non-
global event shapes such as hemisphere or jet observ-
ables, and ↵

n
sL

n�1 (NSL) accuracy [54, 62–64, 68, 85, 86]
for the soft-drop [87, 88] family of observables, in the
limit where either their zcut parameter is taken small
or �sd > 0. (We have not carried out corresponding
logarithmic-accuracy tests, because the small zcut limit
renders them somewhat more complicated than those of
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FIG. 5: Alaric and Dire predictions in comparison to LEP data from [89].
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FIG. 6: Alaric and Dire predictions in comparison to LEP data from [90].

• PanScales shower and Alaric @ NLL accuracy

• significantly different conclusion about ability of NLL shower to describe data 

(similar level of tuning,  is fixed, string fragmentation parameters in 
Pythia 8 tuned to LEP data)

αS = 0.118

4

FIG. 2. Test of NNLL accuracy of the PanGlobal (PGsdf
�=0)

shower for the cumulative distribution of the Cambridge y23

resolution variable, compared to known results for Z !
qq̄ [52] (left) and H ! gg [77] (right). The curves show the
di↵erence relative to NNLL for various subsets of ingredients.
Starting from the red curve, DS additionally includes double
soft contributions and 2-jet NLO matching; 3` includes 3-loop
running of ↵s and the Kresum

2 term. Including all e↵ects (blue
line) gives a result that is consistent with zero, i.e. in agree-
ment with NNLL.

FIG. 3. Summary of NNLL tests across observables and
shower variants. Results consistent with zero (shown in green)
are in agreement with NNLL. The observables correspond to
the event shapes used in Ref. [5] and they are grouped accord-
ing to the power (�obs) of their dependence on the emission
angle. All showers that include the corrections of this Letter
agree with NNLL.

Tests across a wider range of observables and shower
variants are shown in Fig. 3 for a fixed value of � =
↵s ln v = �0.4. With the drifts and all other contribu-
tions included, there is good agreement with the NNLL
predictions [45–52, 58, 61, 77].

Earlier work on NLL accuracy had found that the co-
e�cients of NLL violations in common showers tended
to be moderate for relatively inclusive observables like
event shapes [5]. In contrast, here we see that non-NNLL

FIG. 4. Results for the Thrust and Durham y23 [78] ob-
servables with the PanGlobal showers compared to ALEPH
data [79], using ↵s(MZ) = 0.118. The lower (middle) panel
shows the ratios of the NNLL (NLL) shower variants to data.

showers di↵er from NNLL accuracy with coe�cients of
order one. That suggests a potential non-negligible phe-
nomenological e↵ect.
Fig. 4 compares three PanGlobal showers with ALEPH

data [79] using Rivet v3 [80], illustrating the showers in
their NLL and NNLL variants, with ↵

ms
s (MZ) = 0.118 for

both. We use 2-jet NLO matching [74], and the NODS
colour scheme [6], which guarantees full-colour accuracy
in terms up to NLL for global event shapes. Our showers
are implemented in a pre-release of PanScales [81] v0.2.0,
interfaced to Pythia v8.311 [3] for hadronisation, with
non-perturbative parameters tuned to ALEPH [79, 82]
and L3 [83] data (starting from the Monash 13 tune [84],
cf. Ref. [72] § 5; the tune has only a modest impact on the
observables of Fig. 4). The impact of the NNLL terms is
significant and brings the showers into good agreement
with ALEPH data [79], both in terms of normalisation
and shape. Some caution is required in interpreting the
results: given that the logarithms are not particularly
large at LEP energies, NLO 3-jet corrections (not in-
cluded) may also play a significant role and should be
studied in future work. Furthermore, the PanGlobal
showers do not include finite quark-mass e↵ects. Still,
Fig. 4 suggests that NNLL terms have the potential to
resolve a long-standing issue in which a number of dipole
showers (including notably the Pythia 8 shower, but also
the PanGlobal NLL shower) required an anomalously
large value of ↵s(mZ) & 0.130 [84] to achieve agreement
with the data.
The parton showers developed here are expected to

achieve NNLL (leading-colour) accuracy also for non-
global event shapes such as hemisphere or jet observ-
ables, and ↵

n
sL

n�1 (NSL) accuracy [54, 62–64, 68, 85, 86]
for the soft-drop [87, 88] family of observables, in the
limit where either their zcut parameter is taken small
or �sd > 0. (We have not carried out corresponding
logarithmic-accuracy tests, because the small zcut limit
renders them somewhat more complicated than those of

[van Beekveld et. al. ’24]
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limit where either their zcut parameter is taken small
or �sd > 0. (We have not carried out corresponding
logarithmic-accuracy tests, because the small zcut limit
renders them somewhat more complicated than those of

• Appears to be in contrast with small effects 
found so far in implementing higher order 
splitting functions (though not in complete 
NNLL framework yet) [Höche, Prestel ’17], [Dulat, 
Höche, Prestel ‘18], [Gellersen, Höche, Prestel]
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FIG. 1. Results for leading and next-to-leading order DGLAP evolution in comparison to LEP data from [68].
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FIG. 2. Results for leading and next-to-leading order DGLAP evolution in comparison to LEP data from [69].

• Conclusion from 
PanScales studies: 
NNLL needed to 
describe even 
simple observables


• Achieved by 
multiplicative 
matching of NLO 
splitting kernels + 
correction terms 
capturing effect of 
inclusive gluon 
emissions
  [Höche, Prestel ’17]
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Summary
• Alaric parton shower


• partial fractioning of eikonal leading to positive splitting functions filling full phase space


• global kinematics for soft splitting functions, guarantees NLL and analytic tracking of 
accuracy


• new developments:


• CKKW merging


• systematic variations of NLL ambiguities


• future


• MC@NLO matching on the way (enabling NLL’ accuracy in the soft limit)


• higher order splitting functions with Dire technique + new kinematics


• spin correlations to complete radiation pattern


