The Alaric parton shower

based on

Herren, Höche, Krauss, DR, Schönherr JHEP 10 (2023) 091 [arXiv:2208.06057] Höche, Krauss, DR [arXiv:2404.14360]

Daniel Reichelt, 20 January 2024

Funded by the European Union

Colliders for theorists

- Event simulation factorised into
 - Hard Process
 - Parton Shower
 - PDF/Underlying event
 - Hadronisation
 - QED radiation
 - Hadron Decays

QCD in the soft limit

factorisation in the soft limit ('Eikonal')

integrate over triangle in "Lund plane"

Relation to structure of (NLL) resummation

- only

Simple event shape:
$$\Sigma(v) = \int d\Phi_n e^{-R(v)} \mathcal{F}(v) \sim \exp(Lg_1(\alpha_s L) + g_1(\alpha_s L))$$
$$L \equiv \ln 1/v$$
$$R(v) = \int d\Phi_{+1} \frac{d\sigma_{+1}}{d\Phi_{+1}} \Theta(V(\Phi_{+1}) - v)$$
$$g_i \equiv \sum_k \alpha_s^k L^k$$
Multiple emissions expressed as

Initial emissions expressed as

$$\mathscr{F}(v) = \lim_{\epsilon \to 0} \epsilon^{R'} \sum_{m} \int d\Phi_{+1} \frac{d\sigma_{+1}}{d\Phi_{+1}} \Theta$$

• Additional components: collinear terms form DGLAP splitting kernels, running coupling and CMW scheme for α_{s} evolution \rightarrow relevant for single emission

For example thrust:

$$F(\tau) = \frac{\exp(-\gamma_E R')}{\Gamma(1 + R')}$$

Parton showers - Cliff notes version

- no-emission probability (sudakov factor)
- Main ingredients to a shower:
 - 1. splitting kernels P(z) captures soft and collinear limits of matrix elements
 - 2. fill phase space ordered in evolution variable (k_t , θ , q^2 , ...), definition of t, z away from exact limit (here all showers k_t ordered) softer particles
 - 3. generate new final state after emission according to recoil scheme

e.g. Angular ordered shower, downside: problems with NGLs

Option 2: follow [Catani, Seymour '97] $W_{ik,j} = \bar{W}^{i}_{ik,j} + \bar{W}^{k}_{ki,j}$ where

 full phase space coverage, splitting functions remain positive definite Note related ideas in [Forshaw, Holguin, Plätzer '20]

$\frac{p_i p_k}{(p_i p_j)(p_j p_k)} = \frac{1}{E_j^2} \frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{jk})}$ $W_{ik,j}$ E_i^2

naive implementation leads to soft double counting need to split into *ij* and *kj* collinear terms [Marchesini, Webber '88]

$$\frac{1}{2} \left(\frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{jk})} + \frac{1}{1 - \cos \theta_{ij}} - \frac{1}{1 - \cos \theta_{ij}} \right)$$

$$\bar{W}_{ik,j}^{i} = \frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(2 - \cos \theta_{ij} - \cos \theta_{jk})}$$

Alaric Kinematics - splitting vs. radiation kinematics

• Before splitting:

- and spectator
- $g \rightarrow q\bar{q}$ splitting (at least naively)
- disadvantage: significant impact on emitter kinematics possible, only applicable to purely collinear splitting functions (see later)

• After splitting:

• traditional dipole scheme: share transverse momentum recoil between splitter

advantage: treat both particles symmetric, seems like a natural choice for e.g.

• Before splitting:

• After splitting:

1		<	/	ç
Y		_	2	C
			Ι]
)				
)				
-				
	_			
	_			
)				
~	7	7	7	
1	١	/]	

- So far, LL picture with significant use of NLL ingredients
- collinear splitting functions, CMW scheme, ... • \Rightarrow formalisation towards NLL/NNLL Analytic NLL $\rightarrow accuracy_{10}$ $\longrightarrow \text{Analytic NLL} \rightarrow 0$ unitary Shower $\epsilon = 0.001$ $z(1-z) > k_T^2/Q^2$, $\eta \ge 0$ v from 4-motion beyond *v* from 4-momenta soft k_T & *z* definition soft $k_T \& z$ recoil scheme and implied integration boundaries • \Rightarrow subleading effect play a significant role in -0.5 phenomenological successful parton $\log_{10}(v)$ showers, more systematic understanding desirable, see also [Höche, Siegert, DR '17]

11

Collinear Splitting Functions

• Calculate for example $g \rightarrow q\bar{q}$

 $P_{g \to q}^{\mu\nu}(p_i, p_j) = \frac{T_R}{2p_{ij}^2} d^{\mu}_{\ \rho}(p_{ij}, \bar{n}) \operatorname{Tr}[\not p_i \gamma^{\rho} \not p_j \gamma^{\sigma}] d^{\nu}_{\ \sigma}(p_{ij}, \bar{n})$

assume Sudakov decomposition like

polarisation tensor: $d^{\mu\nu}(p,n) = -g^{\mu\nu} + \frac{p^{\mu}n^{\nu} + p^{\nu}n^{\mu}}{pn}$

• evaluate in collinear limit: $\rightarrow T_R \left[-g^{\mu\nu} + 4z_i z_j \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^2} \right]$

Collinear Splitting Functions

assume Sudakov decomposition like

$$p_{i}^{\mu} = z_{i}\hat{p}_{ij}^{\mu} + \frac{-k_{t}^{2}}{z_{i} 2p_{ij}\bar{n}} \,\bar{n}^{\mu} + k_{t}^{\mu} ,$$
$$p_{j}^{\mu} = z_{j}\hat{p}_{ij}^{\mu} + \frac{-k_{t}^{2}}{z_{j} 2p_{ij}\bar{n}} \,\bar{n}^{\mu} - k_{t}^{\mu}$$

actual shower kinematics: $p_i = z \, \tilde{p}_i ,$ $p_j = (1-z) \, \tilde{p}_i + v (\tilde{K} - (1-z+2\kappa) \, \tilde{p}_i) - k_\perp ,$ $K = \tilde{K} - v (\tilde{K} - (1-z+2\kappa) \, \tilde{p}_i) + k_\perp ,$ $p_i = \frac{z}{1 - v(1-z+\kappa)} \, \hat{p}_{ij} + \frac{z}{1 - v(1-z+\kappa)} \, k_\perp$ $p_j = \frac{(1-z)(1-v) - v\kappa}{1 - v(1-z+\kappa)} \, \hat{p}_{ij} - \frac{z}{1 - v(1-z+\kappa)}$

$$\begin{aligned} & \operatorname{derivation of splitting functions leads} \\ P_{qq \parallel}^{(\mathrm{F})}(p_i, p_j, \bar{n}) = C_F \left(1 - \varepsilon\right)(1 - z_i) \\ P_{gg \parallel}^{(\mathrm{F})}(p_i, p_j, \bar{n}) = 2C_A \, z_i z_j , \\ P_{gq \parallel}^{(\mathrm{F})}(p_i, p_j, \bar{n}) = T_R \left[1 - \frac{2 \, z_i z_j}{1 - \varepsilon}\right] . \end{aligned}$$

$$\begin{aligned} & \operatorname{ultimately, "proper"}_{splitting variables:} \\ & z_i = \frac{z}{1 - v(1 - z + \kappa)} \\ & z_j = 1 - \frac{z}{1 - v(1 - z + \kappa)} \end{aligned}$$

Towards subleading effects for lepton colliders

- same variations available for lepton colliders (as far as they are applicable)
- example here: EEC from $q\bar{q}$ final state at the Z pole
- systematic variations not captured by e.g. scale variations
 - additional uncertainty
 - kinematics enter splitting functions, hope for systematic reduction at higher orders

New Parton Showers - NLL accuracy typical claim based on accuracy of splitting

- typical claim based on accuracy of functions etc.
 - parton showers \sim NLL accurate if CMW scheme for strong coupling is used
- observation in [Dasgupta, Dreyer, Hamilton, Monni, Salam '18] (PanScales collaboration):
 - subtleties arise in distribution of recoil for subsequent emissions ⇒ phase space where accuracy is spoiled if soft gluon absorbs recoil
 - + in colour assignment
 - also: set of tests for shower accuracy [Dasgupta, Dreyer, Hamilton, Monni, Salam '20]

New Parton Showers - NLL accuracy

- Several solutions/re-evaluations of parton shower concepts:
- [Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez '20], [vanBeekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez '22]
 - partitioning of splitting functions and appropriate choice of evolution variable can lead to NLL accurate shower for local and global recoil strategies
- [Forshaw, Holguin, Plätzer '20]
 - Connections between angular ordered and dipole showers
- [Nagy, Soper '11]
 - local transverse, global longitudinal recoil
- [Herren, Krauss, DR, Schönherr, Höche '22]
 - global recoil, enables analytic comparison to resummation and proof of NLL accuracy
- [Preuss '24]
 - global recoil in antenna shower Vinca

Compare: resummation e.g. in CAESAR

- factorisation of matrix elements in soft collinear limit well known
- how to extract NLL observable independent (i.e. without additional information)?
- method from [Banfi, Salam, Zanderighi '05]: need explicit implementation of soft-collinear limit*:

$$k_{t}^{\rho} = k_{t}\rho \qquad \xi = \frac{\eta}{\eta_{\text{max}}}$$

$$\eta^{\rho} = \eta - \xi \ln \rho \qquad \Rightarrow \text{numerically}$$
and assume
$$V(k_{i}^{\rho}) = \rho V(k_{i}) \qquad \Rightarrow \text{numerically}$$
evaluate phase space integrals in this limit

Effect of recoil on accuracy

- question: do recoil effects indeed vanish in soft limit (i.e. $\rho \rightarrow 0$)?* [Dasgupta, Dreyer, Hamilton, Monni, Salam '18]
- consider situation where we first emit \tilde{p}_{ii} from p_a , p_b , then emit p_i , $\tilde{p}_{ij} \rightarrow p_i, p_j$
- transverse momentum of p_i will be $k_t^i \sim k_t^{ij} + k_t^j \to k_t^{ij} \text{ as } \frac{k_t^j}{k_t^i} \to 0$ but, relevant limit is

simultaneous rescaling k_t^i

Alaric - Numerical validation

• Limit $\alpha_{s} \rightarrow 0$ with $\lambda = \alpha_{s}L = \text{const. of}$

$$\frac{\Sigma^{\text{Shower}}}{\Sigma^{\text{NLL}}} \sim \exp\left(f_{\text{Shower}}^{LL} - Lg_1(\alpha)\right)$$
$$\times \exp\left(f_{\text{Shower}}^{NLL} - g_2(\alpha)\right)$$
$$\times \exp\left(\mathcal{O}(\alpha_s^{n+1}L^n)\right)$$

if shower reproduces $\rightarrow 1$ LL, NLL logs

• Observable: jet resolution y_{23} in Cambridge jet measure, $\mathcal{F} = 1 \rightarrow \text{only largest}$ emission matters, check that additional shower emissions vanish

1	1			
	10^{-1}		B(R)	Π
			$\mathcal{F} =$	ex
	10^{-3} 10^{-4}		a = 1	L,
	10^{-5}			
	10 ⁻⁶		α_s	Π
	10^{-7}			
	10 ⁻⁸			
	10^{-9}			
10^{-10} 10^{-11}			α_s	
10^{-12}			us	
	.0 ⁻¹³			
	.0 ⁻¹⁴			
1	.0 ⁻¹⁵			
٦	1.02		+ + +	
	1.0			
	0.98			
	1.02			
	1.02	-		
	1.0			
	0.98			
	-		+ $+$ $+$	
ן	1.02			
	1.0	<u> </u>		
, , ,	0.00			
	0.98		+ + +	
ב	1.02			
	1.0			
- C				
-	0.98			
	1.02		+ + +	
	1.0			
	0.98			
		L).6		-(
		つ	1	
		۷	I	
	_			

Alaric - Numerical validation II

= 0.02

 $\frac{\exp(-\gamma_E R')}{\Gamma(1+R')}$

PS

Alaric - Numerical validation III

 Conclusion from **PanScales studies:** NNLL needed to describe even simple observables

Achieved by multiplicative matching of NLO • splitting kernels + correction terms capturing effect of inclusive gluon

Differential 2-jet rate with Durham algorithm (91.2 GeV) $d\sigma/dy_{23}$ 10^{2} 10 → Data ----- NLO $1/4 t \le \mu_R^2 \le 4 t$ ---- LO $\implies 1/4 t \le \mu_R^2 \le 4 t$ 'Data 10^{-3} 10^{-2} 10^{-4} [Höche, Prestel '17]

Appears to be in contrast with small effects **found so far in implementing higher order** splitting functions (though not in complete NNLL framework yet) [Höche, Prestel '17], [Dulat, Höche, Prestel '18], [Gellersen, Höche, Prestel]

Summary

- Alaric parton shower

 - accuracy
- new developments: \bullet
 - CKKW merging
 - systematic variations of NLL ambiguities
- future
 - MC@NLO matching on the way (enabling NLL' accuracy in the soft limit) \bullet
 - higher order splitting functions with Dire technique + new kinematics
 - spin correlations to complete radiation pattern

• partial fractioning of eikonal leading to positive splitting functions filling full phase space global kinematics for soft splitting functions, guarantees NLL and analytic tracking of

