SuperKEKB and possible enhanced collaboration with FCCee

CERN-KEK Committee, 19th Meeting 26th November 2024

> Kyo Shibata (KEK Accel. Lab.) On behalf of the SuperKEKB

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人高エネルギー加速器研究機構 (KEK)

- SuperKEKB
 - Nano-beam collision scheme
- Project history & Recent status
- Luminosity projection
- Strategy toward 2.4 \times 10 35 cm $^{-2}s^{-1}$
- Collaboration proposal
 - Beam-Beam simulations

SuperKEKB

• SuperKEKB;

- Asymmetric-energy electron-positron collider operating at KEK Tsukuba site
 - An upgrade of KEKB B-factory (KEKB)
 - High-luminosity machine in search of new physics in the B-meson regime.
- Accelerator complex consisting of;
 - Injector (Linac)
 - Positron Damping Ring (DR)
 - Beam Transport Lines (BT)
 - Main Ring (MR) with Belle II Detector
- The world's first practical application of the "nano-beam scheme"

SuperKEKB

- High Energy Ring (HER)
 - 7.0 GeV electron
 - Design beam current : 2.6 A
- Low Energy Ring (LER)
 - 4.0 GeV Positron
 - Design beam current : 3.6 A
- Target Luminosity : ~6×10³⁵ cm⁻²·s⁻¹
 - ~30 times maximum luminosity of KEKB
 - Higher beam current than those of KEKB (×2)
 - β_y^* squeezing and smaller emittance for nano-beam collision scheme

Machine parameters

2040

2010

2010.06

SuperKEKB project history

- Phase1 operation (2016.Feb. ~ June);
 - Vacuum scrubbing, low emittance beam tuning, and background study for Belle II detector installation
 - w/o final focusing system (QCS) and Belle II detector
- Phase2 operation (2018.Mar. ~ July);
 - Pilot run of SuperKEKB and Belle II w/o pixel vertex detector (PXD)
 - Demonstration of nano-beam collision scheme
 - Study on background larger than at KEKB due to much lower beta functions at IP.

- Phase3 operation (2019.March~);
 - Physics run with fully instrumented detector.
 - Phase3 Run1 : 2019.10~2022.7
 - Long shutdown 1 : 2022.7~2024.01
 - Phase3 Run2 : 2024.01~

- Currently In progress
- Aiming to make new word luminosity record

Recent operation - 2024ab run overview

- Jan./29 Feb./20
 - Vacuum scrubbing, Machine tuning, Machine study
- Feb./20 July/1
 - Physics run, Machine tuning, Machine study
 - Struggling with Sudden Beam Loss, poor injection efficiency, low machine stability.
 - Many beam abort caused by SBL and injection beam
 - May/1-12 : Off resonance operation
 - Peak luminosity : 4.47×10³⁴ cm⁻²s⁻¹
 - Integrated luminosity (2024ab) : 103 fb⁻¹
 - Max. Int. lumi. per day : 2.0 fb⁻¹/day
 - Total integrated luminosity : 527 fb⁻¹
 - Maximum beam current : HER/LER = 1210/1539 mA
 - β_y^* -squeezing (Vertical β -function at IP) : ~0.9 mm
 - Mostly operated with β_y^* = 1.0 mm
 - Others :
 - Fixed number of bunches mostly at 2346, finally at 2249
 - Crab waist ratio : HER/LER = 40/80 -> 60/80 %
 - Chromatic X-Y coupling correction by rotatable sextupole magnets.

Recent operation - 2024c run overview

- 2024c run plan
 - Target luminosity : 1×10³⁵ cm⁻²s⁻¹
 - β_y^* -squeezing : Kept at 0.9 mm
 - Target beam current :

LER/HER =2.58 A/1.83 A with 2346 bunches

- Verification of SBL measures during summer shutdown
 - Upside-down rotation of beam pipes and beam pipe knocking
- Machine studies to increase beam current
- Vacuum scrubbing (10/9-10/21)
 - Increasing beam current at an unprecedented pace.
- Physics run (10/24-12/27?)
 - Peak luminosity : $3.74 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - $\beta_v^* = 1.0 \text{ mm}$ due to HER beam blow-up
 - Struggling to increase beam current and suppress emittance growth
 - Many SBLs with vacuum spike at one bellows chamber
 - Black deposits fund in the bellows chamber were removed
 - New candidate of the cause of SBL
 - High radiation dose, large pressure increase, etc.
 - Operation will be continued by the end of December.

2024c run (in progress)

Luminosity projection[#]

Consideration of modification of long-term operation plan has begun

60

50

40

30

20

10

Integrated Luminosity [ab⁻¹

- Increase the luminosity in 3 steps
 - 1^{st} step : 1.0×10^{35} cm⁻²s⁻¹
 - By the end of JFY2024
 - Increasing beam current ٠
 - 2^{nd} step : 2.4×10^{35} cm⁻²s⁻¹
 - Further simulation study is required to • understand the machine

Without

accelerator upgrade

- Long shutdown 2
 - IR upgrade? ۲
 - RF system reinforcement
 - Etc. •

3rd step : 6.0 × 10³⁵ cm⁻²s⁻¹

Accelerator upgrade is required.

11

Strategy before LS2 (toward 1.0×10³⁵)

- Strategy toward 1.0×10^{35} cm⁻¹s⁻¹: Route (B)
 - Increase beam current with $\beta_v^* = 0.9 \text{ mm}$
 - Target current : 2.58 A/ 1.83 A
 - Improve injection under influence of Beam-Beam interactions
 - Reduce injection errors with modified injection scheme
 - Required specific luminosity : $L_{sp} = 5 \times 10^{31} \text{ cm}^{-1} \text{s}^{-1} \text{ mA}^{-2}$
- 2024ab results and outlook
 - With 393 bunches (Result of High bunch current study)
 - $L(393 \text{ bunches}) = 1.38 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - $L_{\rm sp}$ (393 bunches) = ~4×10³¹ cm⁻¹s⁻¹ mA⁻²
 - Degradation due to beam blowup at high bunch current
 - With 2346 bunches (outlook)

Strategy before LS2 (toward 2.4×10³⁵)

• Strategy toward 2.4×10³⁵ cm⁻¹s⁻¹: Route (A)

- β_v^* squeezing down to 0.6 mm :
 - Down to 0.6 mm from 0.9 mm (3 steps)
 - Dynamic aperture improvement :
 - Sextupole optimization
 - Off-momentum optics tuning
 - Comparison between simulations and measurement Increase beam current with ${\beta_y}^*$ = 0.6 mm
- Increase beam current : 2.75 A/ 2.2 A
- Increase specific luminosity (Beambeam parameter)
 - Up to $L_{\rm sp} \sim 9 \times 10^{31} \, {\rm cm}^{-1} {\rm s}^{-1} \, {\rm mA}^{-2}$
 - Improve prediction accuracy of Beam-Beam simulation

Collaboration proposal

- It is still unclear why experimental results are much smaller than the simulation.
 - Can simulation miss some important factors?
- There should be hints to increase luminosity of SuperKEKB.
 - If we identify the cause of the reduction in the luminosity, measures can be taken to improve luminosity.
- Important issue not just for SuperKEKB, but for future colliders with nano-beam collision scheme.
- SuperKEKB would like to collaboration with FCCee on Beam-Beam simulations.
 - Beam-Beam with impedance
 - Beam-Beam with machine errors
 - Beam-Beam with lattice

Strong-Strong Beam-Beam simulation (D. Zhou)

Experimental results

26th November 2024

- SuperKEKB;
 - Asymmetric-energy electro-positron collider operating at KEK Tsukuba site.
 - The world's fist practical application of the "Nano-beam collision scheme".
- Project History and Recent Status;
 - Operation started from 2016.
 - Demonstration of "Nano-beam collision scheme", vacuum scrubbing, Belle II background study, etc.
 - Physics run started from 2019.
 - Luminosity record : $4.7 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - 2024c run is currently underway.
- Luminosity projection;
 - Luminosity will be increased in 3 steps
 - 1^{st} step (1.0 \times 10 35 cm $^{-2}s^{-1}$) : Increasing beam current
 - 2^{nd} step (2.4 \times 10³⁵ cm⁻²s⁻¹) : Further simulation study is required to understand the machine
 - 3^{rd} step (6 × 10³⁵ cm⁻²s⁻¹) : Accelerator upgrade is required, such as IR upgrade, RF system reinforcement, etc.
- Collaboration proposal;
 - SuperKEKB would like to collaboration with FCCee on Beam-Beam simulations.
 - Let's find out what is causing the big discrepancy between simulations and experimental results for future colliders.

Thank you for your attention.

Inter-University Research Institute Corporation **High Energy Accelerator Research Organization (KEK)** 大学共同利用機関法人 高エネルギー加速器研究機構 (KEK)

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人高エネルギー加速器研究機構 (KEK)

