

SIMON FRASER UNIVERSITY

Dark Showers: ATLAS Experimental Overview

Dark Showers Workshop 21 January 2025

Jackson Burzynski

Overview

ATLAS has a robust and ongoing Dark QCD search program

- **Semivisible jets**: *t*-channel production using Run 2 data
- **Dark jets**: s-channel production using Run 2 data
- **Emerging jets:** 🧐 ... stay tuned!

DISPLACED

PROMPT L VISIBLE

Not discussed today but also relevant: search for dark mesons decaying to top and bottom quarks (EXOT-2023-09)

Search for *t*-channel production of dark quarks via bifundamental mediator Φ

Model parameters:			
• m_{q_d} : mass of dark quark	• m		
• $m_{\pi_d}/m_{ ho_d}$: mass of dark pion/rho	• M		
 r_{inv}: #stable dark hadrons/#all dark hadrons 	• r_{11}		
• m_{Φ} : mass of mediator	• m		

The general topology of the signal events shows negligible sensitivity to the chosen mass values

> Parameter Hidden Valle **HiddenVall HiddenVall HiddenVall** HiddenValle Hidden Valle **HiddenVall** HiddenValle **HiddenVall**

Detailed Pythia HV module settings:

Phys. Lett. B 848 (2024) 138324

eters used:

$$n_{q_d} = 10 \text{ GeV} (n_f = 1)$$

 $n_{\pi_d} = 10 \text{ GeV}, m_{\rho_d} = 20 \text{ GeV}$
 $n_{\mu} = 0.1 - 0.9$
 $n_{\Phi} = 1 - 5 \text{ TeV}$

value
2
on
0
on
1.1
0.75
1
0.1
1.0

Baseline analysis selections:

- $n_{\text{jet}} \ge 2$, $E_{\text{T}}^{\text{miss}} > 250 \text{ GeV}$, $\Delta \phi(\text{closest jet}, \vec{E}_{\text{T}}^{\text{miss}}) < 2$
- Events selected with $E_{\rm T}^{\rm miss}$ trigger

Signal region defined by requiring $H_T > 600$ GeV, $E_T^{\text{miss}} > 600$ GeV, and zero leptons

Two key observables used to design a 9 bin grid: yield in each bin treated as an observable

Jackson Burzynski (jackson.carl.burzynski@cern.ch)

Background estimated from simulated background samples constrained from three dedicated CRs:

• Dominant backgrounds: V + jets, $t\bar{t}$, single top, VV, QCD

low- E_{T}^{miss} multijet reweighting region (250 < E_{T}^{miss} < 300 GeV) used to correct simulated QCD background normalization

Phys. Lett. B 848 (2024) 138324

Simultaneous fit is performed to the SR and three CRs

Good agreement is observed between post-fit background estimate and observed data within uncertainties

Upper limits extracted on σ as a function mediator mass for different r_{inv}

• Assuming $\lambda = 1$, mediator masses up to 2.7 TeV are excluded

Monojet search reinterpreted using SVJ signal and found to offer complementary sensitivity

Phys. Lett. B 848 (2024) 138324

Search for s-channel production of dark quarks via vector mediator Z'

• Consider unstable, promptly decaying dark mesons

Z' production and decay governed by coupling to quarks (g_q) and dark quarks (g_{q_d})

- For $g_{q_d} \gg g_{q'}$ dark jet final state dominates
- Dark shower dynamics lead to weakened constraints from dijet resonance searches

Four combinations of parameters are chosen to cover different phase space:

Model	n_f	Λ_d (GeV)	$ ilde{m}_{q'}$ (GeV)	m_{π_d} (GeV)	$m_{ ho_d}$ (GeV)	π_d decay mo
A	2	15	20	10	50	$\pi_d \to c\bar{c}$
B	6	2	2	2	4.67	$\pi_d \rightarrow s\bar{s}$
С	2	15	20	10	50	$\begin{array}{c} \pi_d \rightarrow \gamma' \gamma' \\ m_{\gamma'} = 4.0 \ \mathrm{Ge} \end{array}$
D	6	2	2	2	4.67	$ \begin{array}{c} \pi_d \rightarrow \gamma' \gamma' \\ m_{\gamma'} = 0.7 \ \mathrm{Ge} \end{array} $

<u>Goal</u>: exploit dark shower signature to improve on constraints set by $Z' \rightarrow qq$ dijet resonance searches

<u>JHEP 02 (2024)</u>

)	<u>128</u>
	q_d

Analysis strategy: search for resonant excess in the dijet invariant mass distribution above QCD background

Baseline selections:

- Large-*R* jet trigger
- At least two Large-R jets with R = 1.0, $|\eta| < 2$
- Lead jet $p_{\rm T} > 500 \text{ GeV}$, sublead jet $p_{\rm T} > 400 \text{ GeV}$
- $50 < m_I < 600 \text{ GeV}$
- $m_{ii} > 1.3$ TeV to ensure full trigger efficiency

Dark jet topology characterized by a wide resonant peak

• Key feature which makes standard dijet resonance searches ineffective

JHEP 02 (2024) 128

Main discriminating variables: number of tracks ghost-associated to leading ($n_{\text{track},1}$) and subleading jet ($n_{\text{track},2}$)

<u>Problem</u>: cutting on n_{track} would sculpt the m_{jj} distribution

<u>Solution</u>: define decorrelated observable: $n_{\text{track}}^{\epsilon}(m_{jj}) = n_{\text{track}} - P(m_{jj})$

• Defined to select background jets with efficiency of $\epsilon = 1 \%$

Signal region is defined by requiring $n_{\text{track},1}^{\epsilon} > 0$ and $n_{\text{track},2}^{\epsilon} > 0$

Reduces the multijet background by approximately 99.99%

Background shape template derived from control region with $n_{\text{track}}^{\epsilon} < 0$ for two leading jets

• Decorrelated from m_{jj} by construction

Validation region built by requiring $n_{\text{track},1}^{\epsilon} > 0$ and $n_{\text{track},2}^{\epsilon} < 0$

• Used to test ability of scaled CR template to describe data in signal-adjacent region

Background template then normalized to observed data in the SR from a maximum likelihood fit

- Bumphunter algorithm used to test compatibility with the background-only hypothesis
- No significant excess observed

<u>JHEP 02 (2024) 128</u>

Limits set on $\sigma \times B(Z' \rightarrow q_d q_d)$ for four benchmark models

• Probe g_q values down to 0.05 for Z' masses up to ~3-3.5 TeV

JHEP 02 (2024) 128

Emerging jets

No results yet on emerging jets from ATLAS, but...

New Run 3 triggers will enable searches for resonant s-channel emerging jet production via Z' mediator

Stay tuned!

TRIG-2022-01 Trigger efficiency **ATLAS** Simulation 1.4 Emerging jet $p_{T} > 200 \text{ GeV}$ √s = 13 TeV Large-R PFlow jet p₁ > 460 GeV Offline selection: 1.2 large-R jet p_{τ} > 200 GeV, $|\eta|$ <1.8 0.8 0.6 m_{z'} = 1500 GeV 0.4 $m_{\pi_{dark}}$ = 20 GeV $c\tau = 50 \text{ mm}$ 0.2 500 600 700 300 400 800 200 Leading offline large-R jet p_{τ} [GeV]

Summary

ATLAS dark QCD search program is just getting started!

- First results published for semi-visible and dark jets using full Run 2 dataset
- More Run 2 results on the way, stay tuned!

New triggers for Run 3 and lessons learned from Run 2 will expand and improve upon first wave of dark QCD results

• Very timely to begin these benchmarking discussions :)

Some personal food for thought:

- The landscape of potential dark QCD parameter space is extremely vast...
 - dark QCD searches reinterpretable to facilitate constraints on future benchmarks
 - → <u>LHC reinterpretation workshop</u> next month a good forum to continue these discussions!

 \rightarrow Beyond settling on common benchmark points, we must also dedicate significant effort to making our

