Dark Shower Workshop (Jan 21st 2025, Online)

Exploring Dark Shower with Radiations

¹ Bingxuan Liu, ² Kevin Pedro
1. Shenzhen Campus of Sun Yat-sen University
2. Fermilab

Contact info: <u>bingxuan.liu@cern.ch</u> Skype: prbbing

- There is no doubt that machine learning can explore the SVJ signatures
 - Large amount of decay products
 - Complicated decay chains
 - Interesting event-level features

PhysRevD.108.L031501

- Jet sub-structure variables may not be robust against various showering models
- There may exist better variables that are more resilient
- One area I find critical personally

The ISR Channel

Our recent work: JHEP12 (2024) 105 B.X. Liu, K. Pedro

DOI NOT FOUND 10.1007/JHEP12(2024)105 This DOI cannot be found in the DOI System. Possible **=** 2 Published for SISSA by 🖉 Springer

RECEIVED: September 13, 2024 REVISED: October 20, 2024 ACCEPTED: November 19, 2024 Published: December 13, 2024

Semi-visible jets + X: illuminating dark showers with radiation

Bingxuan Liu⁰^a and Kevin Pedro^b

^aSchool of Science, Sun Yat-sen University, Shenzhen Campus, 66 Gongchang Road, Shenzhen, Guangdong 518107, P.R. China ^bFermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

E-mail: liubx28@mail.sysu.edu.cn, pedrok@fnal.gov

Event-level Topologies

- Dec jet a \vec{E}_{T}^{1} • Calc betv
- Assume the invisible components are aligned with the visible components
 - Decompose E_T^{miss} to the jet axes
 - Calculate the ratio between the invisible component and the sum for each axis

Reconstruct r_{inv}

• Able to recover the theoretical parameter r_{inv}

Reconstruct $m_{7'}$

• Three different mass observables are tested:

• Vanilla transverse mass ($m_{\rm T}$), mass reconstructed using the decomposed $\vec{p}_{\rm T}^{{
m miss}_1}$ and $\vec{p}_{\rm T}^{{
m miss}_2}$ ($m_{
m decomp}$), or using the $m_{
m T2}$ -assisted on-shell technique

Reconstruct r_{inv}

- Signal and background have clear separation on this $m_{MAOS} - r_{inv}$ 2D plane
- Can perform a search on this 2D plane!

2D Approach

- We can achieve a much better sensitivity using a 2D approach
- It is also a unified approach for various r_{inv} values
- The sensitivity to the large r_{inv} region is significantly higher

Conclusion

- $H \rightarrow \tau \overline{\tau}$ or pair produced SUSY particles
- The additional visible energy from the ISR object makes the semi-visible more visible

Pair produced SVJs from resonances share similar event topologies with

• A promising channel to look for SVJs

Thank You!

