Reinterpreting LHC Dark QCD results using MadAnalysis5 Dark showers workshop

Benjamin Fuks, Marie Hélène Genest, Mark Goodsell, Nicoline Hemme, Felix Kahlhoefer, Sukanya Sinha, <u>Thomas Wojtkowski</u>

Dark QCD

- Dark QCD models :
 - different possible mediators between q and q_d (Z', Φ ...)
 - 2 main parameters determining the final jet topology : fraction of stable dark hadrons and life-time of unstable dark particles
- In MadAnalysis (cf Back-up), different analyses available for reinterpretation of dark QCD models and able to be sensitive to a large phase space : - ATLAS and CMS semi-visible jets Run-2 analysis (arXiv:2305.18037 and 2112.11125 resp.)
 - ATLAS dark jets Run-2 analysis (arXiv:2311.03944)
 - CMS mono-jet Run-2 analysis (arXiv:2107.13021)
 - ATLAS di-jet Run-2 analysis (arXiv:1910.08447)

- from arXiv:1712.09279

ATLAS semi-visible jets (Phys. Lett. B 848 (2024) 138324) (ATLAS-EXOT-2022-37)

- t-channel mediator Φ connecting SM quarks to dark quarks :
 - R_{inv} parametrize fraction of stable and invisible dark hadrons
 - final state with at least 2 jets (R = 0.4) with one of these that is aligned with E_T^{miss}
- Signal-plus-background fit to SR and several muon-based CRs simultaneously, all divided into 9 bins thanks to $p_T^{bal} = \frac{|\vec{p}_T(j_1) + \vec{p}_T(j_2)|}{|\vec{p}_T(j_1)| + |\vec{p}_T(j_2)|}$ and $|\phi_{max} - \phi_{min}|$ Exclusion contours in (m_{Φ}, R_{inv}) 2D plane

			Relative	ATLAS cut	MA5 cut
$m_{\Phi} = 1 \text{ TeV}, R_{inv} = 0.6$	ATLAS	MA5	difference [%]	efficiency [%]	efficiency [%]
Pre-selection	844520.2	802004.396	5.03		
$\Delta \phi < 2.0$	816341.4	773773.493	5.21	96.66	96.48
$p_{T, \ leading \ jet} > 250 \ { m GeV}$	791042.5	747516.248	5.50	96.90	96.61
$N_{b-jet} < 2$	707151.0	747516.248	5.71	89.39	100
au jet veto	701537.9	724219.427	3.23	99.21	96.88
$E_T^{miss} > 600 \text{ GeV}$	101378.1	108504.199	7.03	14.45	14.98
$H_T > 600 \text{ GeV}$	101235.2	108504.199	7.18	99.86	100

Analysis accessible at : <u>https://dataverse.uclouvain.be/dataset.xhtml?persistentId=doi:10.14428/DVN/AFYF5Y</u>

CMS semi-visible jets (JHEP 06 (2022) 156) (CMS-EXO-19-020)

- s-channel mediator Z' coupled to SM quarks and dark quarks χ :
 - r_{inv} : fraction of invisible dark hadrons, m_{dark} : dark hadron mass
 - final state with at least 2 jets (R = 0.8) with one of these that is aligned with E_T^{miss}
- Background only fit of observed di-jet transverse mass m_T distribution in the SR Search for a resonance in the m_T spectrum (m_T distribution : smoothly falling for background events, peak for signal process) Limits on $\sigma_{Z'} \times BR(Z' \rightarrow \bar{\chi}\chi)$ in function of $m_{Z'}$ and exclusion contours in $(m_{Z'}, m_{dark})$ and in $(m_{Z'}, r_{inv})$ planes
- Implementation of the analysis in validation

ATLAS dark jets (JHEP 02 (2024) 128) (ATLAS-HDBS-2018-45)

- Z' mediator coupling to q and q_d :
 - prompt decay of dark hadrons to SM particles, several different decay modes considered (cf back-up)
 - final state : at least 2 jets (R = 1.0) with an important track multiplicity
- Search for a resonance in the m_{ii} spectrum, background shape extracted from a control region Limits on $\sigma \times BR(Z' \rightarrow \bar{q}_d q_d)$ in function of $m_{Z'}$
- Implementation in MadAnalysis validated, available soon in the database

Model C, $m_{Z'} = 2.5$ TeV	ATLAS	MadAn
Trigger, $m_{jj} > 1.3$ TeV	65.8	66.
$p_2 > 50 \text{ GeV}, p_{T,j1} > 500 \text{ GeV}, p_{T,j2} > 400 \text{ GeV}$	81.3	79.
$ \eta_{j1,2} < 2$	100.0	98.
$m_{j1,2} < 600 \text{ GeV}, p_{T,j1,2} < 3000 \text{ GeV}$	99.9	99.
$n^{\epsilon}_{track,\ j1,2} > 0$	11.6	11.
Total	6.2	6.1

ATLAS and **MadAnalysis** : cut relative efficiency (%)

CMS mono-jet (JHEP 11 (2021) 153) (CMS-PAS-EXO-20-004)

- Final state : at least one energetic jets (R = 0.4) with large E_T^{miss} , no leptons and no photons
- Several models producing such signature : - for instance : pair production of WIMPs χ with a spin-1 mediator Z' and considering ISR
- SM process contribution determined thanks to simultaneous fit of p_T^{recoil} (p_T of the system that recoils against the hadronic activity) distributions in multiple CRs and in SR Limits on specific models parameters (exclusion contours in (m_{med}, m_{DM})) plane or limits on g_{γ}/g_a in function of m_{med})
- Analysis accessible at : <u>https://dataverse.uclouvain.be/dataset.xhtml?</u> persistentId=doi:10.14428/DVN/IRF7ZL

ATLAS di-jet (JHEP 03 (2020) 145) (ATLAS-EXOT-2019-03)

- Can be sensitive to a Z' coupled to q and q_d through $\bar{q}q \rightarrow Z' \rightarrow \bar{q}q$
- Many models of heavy particles decaying into a pair of SM quark has been considered Final state : at least two energetic jets (R = 0.4)
- Inclusive, 1b ($N_{b-jet} \ge 1$) and 2b ($N_{b-jet} = 2$) signal regions Search for a local excess in the observed m_{ii} spectrum above a SM contribution Upper limits on $\sigma \times A \times \epsilon$ in function of the mass for all the considered heavy particles
- Analysis accessible at : <u>https://dataverse.uclouvain.be/dataset.xhtml?</u> persistentId=doi:10.14428/DVN/KHJ1MW

Reinterpretation

- Process considered : leptophobic Z' decaying into $\bar{q}q$ or $\bar{q}_d q_d$ $BR(Z' \rightarrow \bar{q}q) = BR(Z' \rightarrow \bar{q}_d q_d) = 50 \%$ to have a sufficiently high cross-section for performing the subsequent studies cards
- Scan of $m_{Z'}$ and r_{inv} for now Parameters that could be scanned : g_q , g_{q_d} , dark hadrons masses, dark QCD confinement scale Λ_{OCD} ...

Other parts of the event generation follow CMS semi-visible jet s-channel production

4900023:mWidth = 10.0 4900023:oneChannel = 1 0.5 102 4900101 -4900101 4900023:addChannel = 1 0.25 102 1 -1 4900023:addChannel = 1 0.25 102 2 -2

First results

- analysis
- Dark jets analysis has some exclusion power for $r_{inv} \in \{0.1, 0.3\}$ and for higher masses SVJ t-channel analysis has some exclusion power for higher r_{inv} and for lower masses

from ATLAS-HDBS-2018-45

• Left (right) plot : upper limits on signal cross-section σ (signal strength μ) in function of $m_{Z'}$ for different fraction of stable dark mesons r_{inv} obtained with the ATLAS dark jets (semi-visible jets)

from ATLAS-EXOT-2022-37

Back-up

Reinterpretation of LHC results with MadAnalysis5

- General functioning of MadAnalysis :
 - analysis of interest implemented in C++ code : reproduction of the analysis strategy
 - detector simulation and analysis code applied to new physics events (at hadron level)
 - prediction of number of signal events in SRs : comparison with data and expected background
 - computation of signal cross-section upper limits

11

ATLAS dark jets models

Model	n_f	Λ_d (GeV)	$ \begin{array}{c} \tilde{m}_{q'} \\ (\text{GeV}) \end{array} $	$\begin{array}{c c} m_{\pi_d} \\ (\text{GeV}) \end{array}$	$\begin{pmatrix} m_{\rho_d} \\ (\text{GeV}) \end{pmatrix}$	π_d decay mode
A	2	15	20	10	50	$\pi_d \to c\bar{c}$
B	6	2	2	2	4.67	$\pi_d \to s\bar{s}$
С	2	15	20	10	50	$ \begin{array}{l} \pi_d \rightarrow \gamma' \gamma' \text{ with} \\ m_{\gamma'} = 4.0 \text{ GeV} \end{array} $
D	6	2	2	2	4.67	$ \begin{array}{l} \pi_d \rightarrow \gamma' \gamma' \text{ with} \\ m_{\gamma'} = 0.7 \text{ GeV} \end{array} $