

Hidden valleys in CMS muon endcap detector

2502.xxxxx Wei Liu

In collaboration with Joshua Lockyer and Suchita Kulkarni Nanjing University of Science and Technology

Hidden Valley/Dark Shower

• Hidden Valley

Connected the Dark sector and SM with a Z_D portal.

 $\mathcal{L} \supset g_{\rm SM} Q_{\rm SM} \gamma^{\mu} Z_D q \bar{q} + g_{\rm D} Q_{\rm D} \gamma^{\mu} Z_D q_D \bar{q_D}$

 g_{SM} is the coupling of Z_D to SM quarks. g_D is the coupling of Z_D to dark quarks No other couplings Z_D and g_{SM} are constrained by the resonance searches of dijets

Dark Shower

dark chiral symmetry breaking scale is low, parton shower and hadronization dark quarks form bound states, **dark mesons** Three free characteristic parameter Λ_D , the scale of the theory M_{π_D}/Λ_D , the ratio of dark pion mass to scale N_F , the number of flavours

 N_c the number of colors, $c\tau_{LLP}$ the proper decay lifetime of long-lived pions Number of pions which decay are fixed by several benchmarks

2

Hidden Valley/Dark Shower

Hadrons

$$\frac{m_{\pi_D}}{\Lambda_D} = 5.5 \sqrt{\frac{m_{q_D}}{\Lambda_D}}, \qquad \qquad \frac{m_{\rho_D}}{\Lambda_D} = \sqrt{5.76 + 1.5 \frac{m_{\pi_D}^2}{\Lambda_D^2}}$$

$$N_F(N_F-1) \pi_D^{\pm}$$
 and $N_F \pi_D^0$, same for ρ_D

• Benchmark

Benchmark name	N_C	N_F/N_C	m_{π_D}/Λ_D	$\Lambda_D{ m GeV}$	Stable mesons	Meson decay modes
One π_D^0 decay	5	0.5 - 2.5	0.2 - 1.5	0 - 60	All π_D^{\pm}	$\rho_D^0 \to \pi_D^{\pm} \pi_D^{\pm}$
					$N_F - 1 \pi_D^0$	$\rho_D^{\pm} \to \pi_D^{\pm} \pi_D^0$
						$\pi_D^0 o q \bar{q}$
All π_D^0 decay	5	0.5 - 2.5	0.2 - 1.5	0 - 60	All π_D^{\pm}	$\rho_D^0 \to \pi_D^{\pm} \pi_D^{\pm}$
					$0 \; \pi_D^0$	$\rho_D^{\pm} \to \pi_D^{\pm} \pi_D^0$
						$\pi_D^0 o q \bar{q}$

One π_D^0 decay, branching ratio $1/N_F$ to $q\bar{q}$, $1 - 1/N_F$ stable, All π_D^0 decay, branching ratio 100% to $q\bar{q}$. the decay π_D^0 has lifetime 100 or 1000 mm by hand, as **long-lived particle (LLP)** $\pi_D^0 \rightarrow s\bar{s}, c\bar{c}, b\bar{b}$, according to threshold

CMS Muon Endcap Detector

• Displaced Shower search at the CMS muon endcap detector

CMS collaboration, Phys.Rev.Lett. 127 (2021) 26, 261804

• Signature

Displaced Shower at the muon endcap, shower yield larger number of hits Capture by **cathode strip chambers (CSC)** Number of hits over 130, forming CSC cluster MET > 200 GeV as trigger requirement

CMS Muon Endcap Detector

• The Process

 $pp \rightarrow Z_D \rightarrow q_D \overline{q_D}$, quarks forming hadrons π_D^{\pm} are stable, some of the π_D^0 decays to SM quarks as LLP Leaving displaced shower signature at endcap Large MET measured by the initial state radiation jets

Efficiency Dependence

Master formula

$$\epsilon_{\text{tot}} = N_{\text{LLP}} \times \epsilon_{\text{geo}} (\beta \gamma c \tau_{\text{LLP}}) \times \epsilon_{\text{reco}} (E_{\text{had}}^{\text{CSC}}) \times \epsilon_{\text{cut}} (\text{MET}),$$
$$= N_{\text{LLP}}^{\text{CSC}} \times \epsilon_{\text{reco}} (E_{\text{had}}^{\text{CSC}}) \times \epsilon_{\text{cut}} (\text{MET}),$$

 N_{LLP} , the total number of long-lived dark pions produced N_{LLP}^{CSC} , the one inside the endcap detector ϵ_{geo} , the geometrical efficiency ϵ_{reco} , the reconstruction efficiency as a function of E_{had}^{CSC} ϵ_{cut} , the cut efficiency mainly due to the trigger requirement of MET

 $f_{cluster} \approx \epsilon_{total} / \epsilon_{cut}$

 $f_{cluster}$, the fraction of events containing at least one cluster

Efficiency Dependence

• ϵ_{geo}

As we fixed $c\tau_{LLP}$, it is mainly a function of $\beta\gamma$, which is a distribution $\beta\gamma = p_{\pi_D}/M_{\pi_D}$, N_{π_D} is large, so p_{π_D} changed weakly, mainly by M_{π_D} . When we fix M_{π_D}/Λ_D , M_{π_D} dependent on Λ_D **Strong dependence**

 Λ_D , the scale of the theory

Kinematic Distribution

Average N_{LLP} smaller as Λ_D increase, since M_{π_D} increase $c\tau_{LLP} \approx 100$ mm require large boost at tail, rapidly drops $c\tau_{LLP} \approx 1000$ mm is flat, since change boost still makes it inside volume One pion decay has $1/N_F$ times smaller number

Λ_D , the scale of the theory

Kinematic Distribution

 $E_{had}^{CSC} \approx p_{\pi_D} \approx M_{\pi_D} \beta \gamma$, larger $c\tau_{LLP}$ require smaller $\beta \gamma$, so smaller E_{had}^{CSC} E_{had}^{CSC} increase as Λ_D increase, since M_{π_D} increase $f_{cluster} \approx \epsilon_{total} / \epsilon_{cut}$, mainly by N_{LLP}^{CSC} , or ϵ_{geo} from $\beta \gamma$ distribution

Λ_D , the scale of the theory

Model Independent Upper limits

$$\sigma^{\mathrm{up}} \times \mathcal{L} \times \epsilon \approx N^{\mathrm{up}}.$$

Current CMS: $\mathcal{L} = 137 \ fb^{-1}$, MET > 200 GeV, $N^{up} \approx 6$ HL-LHC, 'Soft Trigger': $\mathcal{L} = 3000 \ fb^{-1}$, MET > 50 GeV, $N^{up} \approx 3$ by requiring more hits, see JHEP 02 (2023) 011

 $M_{\pi_D}/\Lambda_D < 1.5$ has similar dependence, since also change M_{π_D} , Displaced shower search is sensitive to low Λ_D and M_{π_D}/Λ_D

N_F/N_C , the number of flavor and color

• Sensitivity

Displaced shower search is sensitive to small N_F , when only one pion decay

Summary

- We recast the existing displaced shower search at CMS endcap to look for dark shower models, and derive model independent upper limits cross section
- We are interested in three free characteristic parameter Λ_D , M_{π_D}/Λ_D and N_F
- The efficiency of displaced shower search can be amplified since we can have 10s of LLPs, is mainly controlled by the geometrical acceptance, which dependent on the boost factor, and so M_{π_D} the mass of pions
- Certain $c\tau_{LLP} = 100$ mm, different Λ_D , M_{π_D}/Λ_D lead to boost factor changes, so the efficiency varies. Displaced shower search is sensitive to these parameters and g_D can still be small.
- Displaced shower search is sensitive to N_F when the portion of dark pions decay dependent on N_F .