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The Territory of HV/DS

MJS & Zurek 2006
Why useful to give this giant class of theories a single name?

Qualitative Predictions (alone or in combination)
» Multiple neutral particles decaying to SM particles (and often MET)
» High-multiplicity production
» Unusual clustering

» Displaced vertices

Back in 2006, all of these were off the radar
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Need to Go Beyond the Lamp Post of QCD
How to Do So?

Leptons and Photons : General experimental approach
1. Pair them & use invariant mass; or
2. Count them
 Limit use of (model-dependent) jet information until these are done
» Theory uncertainties only enter in recasting

« Weird jets / weird events: Develop improved theory/simulations
« Showering
« Hadronization

« Also need more work on hadron spectrum and hadronic decays
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Leptons using jet-independent searches

Signature: leptons + X Typically | Typically | Typically
<2[lpa|rs 2[lpa|rs >>2[lpa|rs

Resonant

Resonant but less isolated A A, B B, C
Non-resonant A" A’? C
Displaced D D D

A: 2-lepton bump hunt in semi-exclusive Drell-Yan events
A’: same as A but no isolation and tight d, cut
A’’: same as A but endpoint instead of bump hunt

B: 4 leptons in two equal-mass pairs, bump hunt

C: 5 or more leptons

D: Displaced lepton pair



Photons S
using jet-independent searches

. hotons
Signature: lept~-, Typically | Typically | Typically
<2mpa|rs ZMpalrs >> ZMpalrs

Resonant

Resonant but less isolated A A, B B, C
Non-resonant A” A’? C
Displaced D D D

photo _ . .
A: Z;Lapla‘*ﬁump hunt in semi-exclusive Duaksr M events
A’: same as A but no isolation and tighie= Ut

A’’: same as A but endpoint instead of bump hunt

hotons
B:4 Mn two equal-mass pairs, bump hunt

photong [or even just 4!]
C: 5 or more

photons
D: Displaced le
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Leptons using jet-independent searches

Signature: leptons + X Typically | Typically | Typically
<2 llpalrs 2llpa|rs >>2[lpa|rs

Resonant

Resonant but less isolated A A, B B, C
Non-resonant A” A’? C
Displaced D D D

A: 2-lepton bump hunt in semi-exclusive Drell-Yan events
A’: same as A but no isolation and tight d, cut
A’’: same as A but endpoint instead of bump hunt

B: 4 leptons in two equal-mass pairs, bump hunt

C: 5 or more leptons

D: Displaced lepton pair



Leptons using jet-independent searches

Signature: leptons + X Typically | Typically | Typically
<2 Wl pairs | 2l pairs | >>2ll pairs

Resonant A B

Resonant but less isolated A A, B
Non-resonant A” A’? C
Displaced D D D

A: 2-lepton bump hunt in semi-exclusive Drell-Yan events
A’: same as A but no isolation and tight d, cut
A’’: same as A but endpoint instead of bump hunt

B: 4 leptons in two equal-mass pairs, bump hunt

C: 5 or more leptons

D: Displaced lepton pair



General Searches for Leptons

B Pairing Example: ATLAS search in U(1) HV/DS 2306.07413

q

Z— Ahp — AAA I e

Cf. Schabinger and Wells ‘05

» Require two pairs of loosely isolated £7¢~ with msy < M7z
» Require two Ap — ¢T¢~ candidates of equal mass

» Avoid my, < 5 GeV and my, near Upsilon
C Counting Example: ATLAS Search for multileptons 2103.11684
» Typical search for several isolated leptons, sometimes with MET

» Includes bin with > 5 leptons, no MET requirement

Recommended by Izaguirre and Stolarski 2018
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Recast B: ATLAS (L)(L1)

24
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Recast B: ATLAS (L)(L1)

2412.14452 with Junyi Chen, Rabia

Hussein, and Lingfeng Li
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Recast B: ATLAS (L)(L1)

2412.14452 with Junyi Chen, Rabia
Hussein, and Lingfeng Li

Dark photon branching fractions
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Recast for HV/DS with Dark Showers?

Uncertainty from hadronization?
Effects of lepton isolation?
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Generalize to HV/DS with Leptons

Many HV/DS with a dark vector boson (7yp, pp, etc.) produce leptons

» SM QCD: m, < m, = Br(p — 7r) ~ 100% = no leptons

» Common HV/DS: 2m., > m,, = no pp — TpTp
» Often Br(pp — SM) ~ 100% = Br(pp — £747) ~ 10% — 30%

But can we simulate jets reliably with 2m,, > m, 7

Hadronization:

» No analytic methods, lattice methods, lower-dimensional models

» Standard approaches for QCD (NOTE: both assume Ny ~ N. > 1)

» Lund string model (PYTHIA)
» HERWIG clustering model

20



Hadronization Uncertainties

In progress with Junyi Chen, Rabia Hussein, and Lingfeng Li

PYTHIA Lund model
» forms a flux tube string between color sources,
» then breaks it into pieces (hadrons) using a probability distribution

» requires there be light quarks in the fundamental representation

It has four relevant parameters
» a, b control momentum along string direction
» o, controls momentum transverse to string

» probVec controls spin-1 vs spin-0 probability

Two sources of uncertainties

1. Intrinsic to PYTHIA hadronization parameters in QCD
» how well constrained are a, b, o, probVec by QCD data?

2. Arising from difference between our HV/DS and QCD

» how do a, b, o, probVec vary with e.g. m,?

21



Hadronization Uncertainties

In progress with Junyi Chen, Rabia Hussein, and Lingfeng Li

PYTHIA Lund model
» forms a flux tube string between color sources,
» then breaks it into pieces (hadrons) using a probability distribution

» requires there be light quarks in the fundamental representation

It has four relevant parameters

» a, b control momentum along string direction

> ag, COﬂtFOlS momentum transverse to string .
NOTE: New Version of PYTHIA HV

» probVec controls spin-1 vs spin-0 probability| * Corrects settings forband o
Updates defaults to Monash tune

Changes some parameter details

1. Intrinsic to PYTHIA hadronization parameters in QCD
» how well constrained are a, b, o, probVec by QCD data?

2. Arising from difference between our HV/DS and QCD

» how do a, b, o, probVec vary with e.g. m,?
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Hadron Spectrum

In progress with Junyi Chen, Rabia Hussein, and Lingfeng Li

Lattice Gauge Theory: m,, m, vs. mq

Regimes

» my <N\ mpy < m,asin QCD

DeGrand and Neil, 2020

500 1000 1500 2000

(MeV) m,

100 200 300 400 500 600
(MeV) m,
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Hadron Spectrum

In progress with Junyi Chen, Rabia Hussein, and Lingfeng Li

Lattice Gauge Theory: m,, m, vs. mq

Regimes

» my <N\ mpy < m,asin QCD

> mg > A: stable glueballs, Lund model fails
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Hadron Spectrum

In progress with Junyi Chen, Rabia Hussein, and Lingfeng Li

Lattice Gauge Theory: m,, m, vs. mq

Regimes

» my <N\ mpy < m,asin QCD
» mg > N\: stable glueballs, Lund model fails
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DeGrand and Neil, 2020
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DeGrand and Neil, 2020

Hadron Spectrum o e
' Heavy 3
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Large Nf and Approx Fixed Points

In progress with Suchita Kulkarni
and Joshua Lockyer

da da
dlnp B = ding
0.04:—
0.02

-0.02 A

T
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If 31 < 0 < 35, then 2-loop fixed points at @ = a, = —%
1
Asymptotically free
Maybe QCD-like (QL) Conformal window (CW) Infrared free (IF)
oversimplified *
0 (Ng/Ne¢)ew 11/2 Np/Nc
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SM-like
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SM-like
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Multiplicity of Emitted Radiation in Jet

n~(Q /A)V**N: forconstant a

Naive Gluon Multiplicity Per Jet (N_c = 3)

Q
§ — ] =1000
©)
500 -
_ Q)
— ] =100
100 - (Ac
50 -

| 0
(E) =19
10

I I I I | I I I I |
0.1 0.2 0.3 0.4 0.5



dIn 2 p =

0.4}
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Large Nf and Approx Fixed Points
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Compared to QCD, the coupling runs slower, but is larger in the UV,
so more radiation (at larger angles) happens in the UV

Might these unfamiliar dark jets escape from ATLAS/CMS
search strategies that assume SM-QCD-like dark jets?




Technical Issues Blocking Conformal Window Simulation

Coupling: PYTHIA uses PDG approximation for 2-loop «

Parton Shower: requires Sudakov factor

Hadron Spectrum: Max Nf in PYTHIA HV is currently 8
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Technical Issues Blocking Conformal Window Simulation

Coupling: PYTHIA uses PDG approximation for 2-loop «
» UV-expansion, does not see IR fixed points
» Works well for Ny < 2N, but inaccurate for N¢ ~ (4 —5.5) N,

Parton Shower: requires Sudakov factor

Hadron Spectrum: Max Nf in PYTHIA HV is currently 8
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Exact and Approximate 2-Loop Coupling

Ba = —a®(Bo + f10v)

Bo

If 51 < 0 < (5, then 2-loop fixed points at o = o, = —5
1

Exact GardiKarliner 1998

?
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Exact and Approximate 2-Loop Coupling

Ba = —a®(Bo + f10v)

Bo

If 51 < 0 < (5, then 2-loop fixed points at o = o, = —5
1

Exact GardiKarliner 1998
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Technical Issues Blocking Conformal Window Simulation

Coupling: PYTHIA uses PDG approximation for 2-loop «
» UV-expansion, does not see IR fixed points
» Works well for Ny < 2N, but inaccurate for N¢ ~ (4 —5.5) N,

Parton Shower: requires Sudakov factor

Hadron Spectrum: Max Nf in PYTHIA HV is currently 8
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Technical Issues Blocking Conformal Window Simulation

Coupling: PYTHIA uses PDG approximation for 2-loop «
» UV-expansion, does not see IR fixed points
» Works well for Ny < 2N, but inaccurate for N¢ ~ (4 —5.5) N,

Parton Shower: requires Sudakov factor
» PYTHIA uses veto method for «

» Requires a1—joop > 2 joop
» Fails in UV: 57 < 0= 1-loop a < PDG «
» Fails in IR: 1-loop a@ — oo but real 2-loop « finite

Hadron Spectrum: Max Nf in PYTHIA HV is currently 8
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Sudakov Factors and Veto Algorithms

Probability not to radiate between @; and Q-

le dQ/2 Q(sz) émax(Qﬂ)
A, (@2, Q%) = exp | — / P, we(¢de! |
(@2 1) @ Q% 2 Je0 ; -
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Sudakov Factors and Veto Algorithms

Probability not to radiate between @; and Q-

le dQ/2 Q(sz) émax(Qﬂ)
A, (@2, Q%) = exp | — / P, we(¢de’ |
(@2 1) @ Q% 2 Je0) ; "

Q]2_ dQ/2 Q Ql2 £max(002) }
~ exp (/2 o7 (27T ) exp / 2 P.sbe(E)dE
\ Q. gmin(QO ) )

2 /AN b,c

(W)™ [weren=2 (%))

With this result, R = A,(Q4, Q) can be solved for Q,

, Y
] 2nd term: veto algorithm to obtain &
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Technical Issues Blocking Conformal Window Simulation

Coupling: PYTHIA uses PDG approximation for 2-loop «
» UV-expansion, does not see IR fixed points
» Works well for Ny < 2N, but inaccurate for N¢ ~ (4 —5.5) N,

Parton Shower: requires Sudakov factor
» PYTHIA uses veto method for «

» Requires a1—joop > 2 joop
» Fails in UV: 57 < 0= 1-loop a < PDG «
» Fails in IR: 1-loop a@ — oo but real 2-loop « finite

Hadron Spectrum: Max Nf in PYTHIA HV is currently 8
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Technical Issues Blocking Conformal Window Simulation

Coupling: PYTHIA uses PDG approximation for 2-loop «
» UV-expansion, does not see IR fixed points
» Works well for Ny < 2N, but inaccurate for N¢ ~ (4 —5.5) N,

Parton Shower: requires Sudakov factor
» PYTHIA uses veto method for «

» Requires a1—joop > 2 joop
» Fails in UV: 57 < 0= 1-loop a < PDG «
» Fails in IR: 1-loop a@ — oo but real 2-loop « finite

Hadron Spectrum: Max Nf in PYTHIA HV is currently 8
» For N. = 3 conformal window Nf 2 8 — 15
» For N. >3, N 2 (2.6 —5.5)N. > 8
» N. =2 PYTHIA not reliable (baryons = mesons)
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PYTHIA capabillities: Do not use in red region

Colors
Not Coded
8- o | e o o
Bl o | e o o o

Infrared-Free

ISpeptrulm/II-Iadlronilzatilon |
5 NotValid 10

| | | | |
15 Flavors 20 50




Technical Issues Blocking Conformal Window Simulation

Coupling: PYTHIA uses PDG approximation for 2-loop «
» UV-expansion, does not see IR fixed points
» Works well for Ny < 2N, but inaccurate for N¢ ~ (4 —5.5) N,

Parton Shower: requires Sudakov factor
» PYTHIA uses veto method for «

» Requires a1—joop > 2 joop
» Fails in UV: 57 < 0= 1-loop a < PDG «
» Fails in IR: 1-loop a@ — oo but real 2-loop « finite

Hadron Spectrum: Max Nf in PYTHIA HV is currently 8

» For N. = 3 conformal window Nf 2 8 — 15
» For N. >3, N 2 (2.6 —5.5)N. > 8

» N. =2 PYTHIA not reliable (baryons = mesons)




Summary
To advance our reach for HV/DS discovery requires diverse methods

Sure, let’s look for QCD-like jets — but nature may not provide them
Need to look more widely, yet not be dominated by theoretical uncertainties

Options discussed here:

« Don’t focus on the jets, just look for the leptons and photons
» Discoveries are possible without assuming a model

» Focus on the jets, but improve theory/simulation
* Need to search for & train on non-QCD-like jets (e.g. large N;/ N,)
« But can only do that with better theory/simulation
« Understand spectrum, showering, hadronization more broadly
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Backup Slides
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What is a Hidden Valley?

MJS & Zurek 2006
A sector of SM-neutral particles which

1. can be produced in SM collisions with a reasonable rate
(not gravitationally-coupled hidden sectors)

2. include states that can decay within 1 sec
(not sectors with massless final states or coupled too weakly)

3. have self-interactions that complicate the dynamics
(i.e. not sectors of single dark photon or single free fermion)

Often called "dark sectors” or "rich dark sectors” nowadays
(especially if sector contains dark matter)
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The Territory of HV /DS

MJS & Zurek 2006

Why useful to give this giant class of theories a single name?

Qualitative Predictions (alone or in combination)

>

>

>

>

Multiple neutral particles decaying to SM particles|(and often MET)

High-multiplicity production

Unusual clustering

Displaced vertices

“Dark Jets”

Back in 2006, all of these were off the radar
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The Territory of HV /DS

MJS & Zurek 2006

Why useful to give this giant class of theories a single name?

Qualitative Predictions (alone or in combination)

>

>

>

>

Multiple neutral particles decaying to SM particles (and often MET)

High-multiplicity production

“Semi-Visible Jets”

Unusual clustering

Displaced vertices

Back in 20006, all of these were off the radar
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The Territory of HV /DS

MJS & Zurek 2006
Why useful to give this giant class of theories a single name?

Qualitative Predictions (alone or in combination)

» | Multiple neutral particles decaying to SM particles|(and often MET)

\4

High-multiplicity production

“Emerging Jets”

v

Unusual clustering

v

Displaced vertices

Back in 20006, all of these were off the radar
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The Territory of HV /DS

MJS & Zurek 2006
Why useful to give this giant class of theories a single name?

Qualitative Predictions (alone or in combination)

» | Multiple neutral particles decaying to SM particles|(and often MET)

» | High-multiplicity production

“SUEP”

» fUnusual clustering

» Displaced vertices

Back in 20006, all of these were off the radar
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10" 1

Reproduction of ATLAS Search

2

+

=

T

< 1 /

< 1 -

I

N

% | Us observed

g Us expected
Our results are consistent with ATLAS, and M Y T
consistently weaker by a bit less than a factor of 0,
2. — My, =30

5
This gives us confidence to recast the search. ¥

£ 1%

'}l - S—

s

o]

0t 10 15 20 25
mga: [GeV]
10‘_,

— Mmp, =50

<

+

3

T

:g 107 4

<

T

by ‘//

g

[+]

5 10 15 20 25
my [GeV]



Herwig++ Physics and Manual

M. Biihr!, S. Gieseke!, M.A. Gigg?, D. Grellscheid’, K. Hamilton®, O. Latunde-
Dada*, S. Plitzer', P. Richardson®?, M.H. Seymour®“, A. Sherstnev*, J. Tully?,
B.R. Webber*

7 Hadronization

After the parton shower, the quarks and gluons must be formed into the observed hadrons. The
colour preconfinement property [74| of the angular-ordered parton shower is used as the basis of
the cluster model [2], which is used\n Herwig++ to model the hadronization. This model has the
properties that it is local in the col§ur of the partons and independent of both the hard process
and centre-of-mass energy of the col\ision [2,3].

PRECONFINEMENT AS A PROPERTY OF PERTURBATIVE QCD

D, Amati and G. Veneziano

CERN -~ Geneva
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PRECONFINEMENT 45 A PRCPERTY OF PERTURBATIVE Qcp 1979

D. Amati and G. Veneziano

CERN —— Genevsa

The first important point to realize is that, in the axial gauge and at the

. 2
leading log level we are working in, all relevant graphs are planar ), It follows

that the final quanta can be ordered, as shown in Fig. 1. Furthermore, there is

a natural way to group them (Fig. 1) into sets Ci of adjacent partons each con-

sisting of a quark, an antiquark and a number of gluons. These systems contain

*)

a dominant singlet component and, indeed, are pure colour 51ng1ets

*%)

in the

N »> o limit , which incidentally, does also select planar dlagrams.

It w111 be the mass of these colourless systems (e. g. of C;) that we shall
find to be cut off by a power law of the form (MC /QQ) . Moreover, this result.
1

will make use of all the basic properties of QCD, i.e. its non-Abelian character,

*) Another amusing consequence of this planarity is that neither OZI—v1olat1ng
processes, nor glueball formation is allowed in the leading log approximatio

e appropriate limit here 1s the one > in which N, (number of colours) goes
to infinity with a N fixed and N /N fixed (N is the number of quark
flavours).

None of this is true for hadronization into glueballs -



. Lund Model
No splitting ®
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N, ~N_, rapid splitting o Lund Model

H
M
ﬁ

9 4
%H
q q
q q

Splitting completes before oscillation;
Splittings are space-like separated!
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Create gg pairs from one end of string
» Pick next qg;q; flavor with some m,-dependent probability
» Pick next hadron: spin-1 with prob. probVec, otherwise spin-0

» Pick g; transverse momentum to the string
2 2
P(py)=e Pi/°

» Give hadron p; = z;P. (remaining long. momentum) according to

1 — 7)2
P(z) = N( 2) e~ bmi/z (from symmetry)
z
where m?L — mfzvadron + Pﬁ_

» Repeat

q g 74 Q 4o
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Create gg pairs from one end of string
» Pick next qg;q; flavor with some m,-dependent probability
» Pick next hadron: spin-1 with prob. probVec, otherwise spin-0

» Pick g; transverse momentum to the string
2 2
P(py)=e Pi/°

» Give hadron p; = z;P. (remaining long. momentum) according to

1 — 7)2
P(z) = N( 2) e~ bmi/z (from symmetry)
z
where m?L — mfzvadron + Pﬁ_

» Repeat

For my, < A\, only parameters are probVec, o, a, b

e Last three have to do with string breaking: depend mainly on A, not m,
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Sudakov Factors and Veto Algorithms

Probability not to radiate between @; and Q-

Aa (Q22; le) = exp T

> Pabe(€)de |,

min(Q’z) b,C

2 2 2 12
Ql dQl O:f(Q, ) /gmax(Q )
@ Q° 2m Jg

Given Q,, need to find (lower) Q, where next parton is radiated:
Trick: choose random number R, solve R = A,(Q4, Q,) for Q,.

Problem: can’t solve it analytically

Trick: find overestimate for integrand of A, such that™ can be solved analytically,
then correct for the overestimate (“veto algorithm?”)

Problem: good at 1-loop, but at 2-loop, using PDG formula, can’t solve analytically
Trick: overestimate includes replacing 2-loop by 1-loop formula and veto algorithm

Problem: not an overestimate in conformal window, and PDG formula diverges in IR
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Sudakov Factors and Veto Algorithms

Probability not to radiate between @; and Q-

le dQ/2 G(sz) Emax(oﬂ)
A, (@2, Q%) = exp | — / P, we(¢de’ |
(@2 1) @ Q% 2 Je0) ; "

Q]2_ dQ/2 Q Ql2 £max(002) }
~ exp (/2 o7 (27T ) exp / 2 P.sbe(E)dE
\ Q. gmin(QO ) )

2 b,c
J\ \
Y Y
2nd term: veto algorithm to obtain &
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HV/DS Signatures s o

Hidden Valley / Dark Sector Scenario: .% HV/DS
orta

» Wide variety of unusual signatures can result
* New neutral particles, possibly low mass
 Some invisible and/or some visible, some resonances, some LLPs
» Odd clustering =» weird jets, weird events
 Large fluctuations event-to-event
« Exotic H/Z/W/t decays

 Among models, most common signals from new objects:
* New vectors V = dileptons — easy
* New scalars S =
» Di-heavy (bb, cc, tt) — good target for searches, but almost ignored!
 Di-gluon, with rare diphoton — challenging unless yy somewhat common
 New fermions F = SO + MET or V) + MET - a little harder, not so different
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HV/DS Signatures s o

Hidden Valley / Dark Sector Scenario: ‘

« Motivations vary
» Naturalness: e.g. variations on Twin Higgs Chako, Goh, Harnik '05 ; Craig et al. ‘14
« Dark Matter: many models now , e.g. Kribs et al. ‘09, Hochberg et al. 15 (SIMPs), ...

* In recent years, some signatures have been given memorable names

« “Emerging Jets”: clustered LLPs with few/no prompt tracks 2CV@WTUGE Stolarski
eiler‘15

« “Semi-Visible Jets”: w/ both invisible and visibly-decaying objects <L30hen, Lisanti &
ou ‘15

« “Soft Unclustered Energy Pattern” (SUEP): spherical blob of soft-ish particles

replaces “soft bomb”, Knapen et al. ‘16

71



Reproduction of ATLAS Search
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Dark Hadron Production in Fraternal Twin Higgs Model
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From String Theory

Misconceptions About SUEP | #% @ @ &

Also Hatta, lancu & Mueller 08

“SUEP is due to conformally invariant physics (CFT)” (i.e. scale-invariant)

Simply wrong. Physics depends on the CFT’s coupling constant o

« CFT can give QCD-like jets, fatter jets, many soft jets, or SUEP
a.N,<<1 > a.N_>>1

“SUEP is spherical, smooth distribution”

Not necessarily. Only if: &.N,>> 1, M, >> A not far above Aqqp

* If dark hadrons heavy enough (A >> 7 GeV), many soft jets =» spiky

« IfM,, >> A not large or o.. N, not so large, few dark hadrons =» spiky + soft
 If some dark hadrons stable i.e. invisible, then gaps = spotted

* If unfamiliar confinement (e.g. only gluons) =» far from spherical
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The First SUEP Simulation (with many soft b’s)

MJS ‘08
QCD-like SUEP-y
FIG. 25: An event (generated with HVMC 0.5) in which a 3.2 FIG. 26: An event (generated with HVMC 0.5) in which a
TeV Z' decays to 30 GeV v-pions (see [1] for definitions) in a 3.2 TeV Z’ decays to 30 GeV v-pions (see [1] for definitions)
hidden sector which @ak coupling above ~ 100@ in a hidden sector which h@ng coupling at all ene@
Notice the thrust axis is roughly vertical, though the events Notice the event is now spherical. The event shown contains

are by no means not pencil-like. The event shown contains roughl@)ottom quarks and tau 16@

roughlywenty bottom quarks and tau leptons—>

For related study, see also Cesarotti, Reece & MJS ‘20
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Long-Lived Particles: Subtleties

* Process with many b’s or many short-lived LLPs
« Many displaced tracks
* High multiplicity of low-track-multiplicity vertices
Can these be found with only L1 tracks from the outer tracker?

» Clustered Long-Lived Particles
« E.g. HV/DS “emerging jets”
» Prompt tracks and decays in outer tracker/HCAL/muon system
» Will these interfere with one another?
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