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Higgs portal to hidden sectors

« Higgs portal to the hidden sectors is very well motivated
- Higgs-initiated decays especially well motivated

- Branching frac. bounded by Br(h — exotic) < 0.21

« The nature of a dark shower is determined by
the Hooft couplings, A = g°N,

- Huge diversity the nature of Dark Showers (DS)
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Higgs portal to hidden sectors

 Higgs portal to the hidden sectors is very well motivated
- Higgs-initiated decays especially well motivated

- Branching frac. bounded by Br(h — exotic) < 0.21

« The nature of a dark shower is determined by g
the Hooft couplings, A = g°N,

- With m(n) ~ 10 GeV or greater, Dark showers
could be nearly prompt
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Higgs portal to hidden sectors

 Higgs portal to the hidden sectors is very well motivated
- Higgs-initiated decays especially well motivated

- Branching frac. bounded by Br(h — exotic) < 0.21

« The nature of a dark shower is determined by g
the Hooft couplings, A = g°N,

- With m(n) ~ 10 GeV or greater, Dark showers
could be nearly prompt
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Higgs portal to hidden sectors

 Higgs portal to the hidden sectors is very well motivated
- Higgs-initiated decays especially well motivated

- Branching frac. bounded by Br(h — exotic) < 0.21

« Studying the Perturbative Benchmark models [1]

- With m(n) ~ 10 GeV or greater, Dark showers

could be nearly prompt
10

- Notoriously challenging signatures to identify o |

s 105_

- Fewer handles to suppress SM background
compared to SV|s and Emerging Jets
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Higgs initiated Dark Showers
« Initially targeting the ggF production of Higgs — DS

- Leverage the ISR + ggF production of Higgs g
- Capture entire Dark Shower in Large-R jet T
ga’
ISR
» Final state with huge SM (QCD) background
- We can’t use traditional substructure N )
techniques to identify Darkshowers < [P

| 1 Higgs to Dark Shower
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Higgs initiated Dark Showers
« Initially targeting the ggF production of Higgs — DS

- Leverage the ISR + ggF production of Higgs g

- Capture entire Dark Shower in Large-R jet

* Final state with huge SM (QCD) background

— Substructure in DS is still different
compared to QCD 1

- For m(n) > 10 GeV, tends to dominated
by multiple heavy flavor quarks

SVs

« Diversity in DS decays, prevents the use of
Supervised ML methods

- We use Representation Learning to
identify HIggS — DS signatures Anomaly Metric

=)
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Higgs initiated Dark Showers
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https://arxiv.org/abs/2412.07033

Robust Rep. Learning for AD

Use NuRD to maximize the info in representations
- Use multiple SM decays, to teach NN physics
- Build representations

- Use these to representations detect anomalies

Better performance than density estimation

X: Inputs

@ Z: Nuisance,Y: label

Classifier

r(x): N-1 Layer ! pu—
| rY[Z27] |

Output Critic
pyrx, Y, 1Z,2])
L =w| CEQY,,.4. Y,,0) — Al0g -
1 —p¢

More info check out : arXiv:2401.08777
[A. G, L. Zhang,A. Puli, K. Cranmer, J. Ngadiuba, R. Ranganath, N.Tran]
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Robust Representation to Characterize the Dark Showers
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Robust Rep. Learning for AD
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Summary #
 Higgs mediated dark showers are well motivated, but challenging to detect
- Prompt Dark Showers arising from this signature are under explored

- Need deviated techniques to identify these signatures

« Representation Learning: A method to capture diverse DS final states
- Initial studies show promise to capture DS, with out training on them
- NuRD ensure the robust and kinematic invariant representations

- Build a metric space of various DS topologies

« Work underway in developing and publishing these techniques
- Plan to extend the work to other decay portals

- Ongoing search in CMS targeting these decay topologies
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Thank you !



Higgs initiated Dark Showers

» Expected number of # mesons and their branching fraction

- Targeting the SM Higgs scenario
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Using framework provided in 10.1103/PhysRevD.103.115013
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What is it ? 2t Fermilab

Lets say we train a algorithm to identify cows vs penguins

* We use the photos of cows and penguins to train the algorithm

Cows typically in

Penguins typicall
grassland backdrop & ypically

Photographed in snow
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What is it ? 2t Fermilab

- Lets say we train a algorithm(NN) to identify cows vs penguins

* We use the photos of cows and penguins to train the algorithm

Cows typically in

Penguins typicall
grassland backdrop & ypically

Photographed in snow

* What about pictures of cows on snow ?
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What is it ? 2t Fermilab

- Lets say we train a algorithm(NN) to identify cows vs penguins

* We use the photos of cows and penguins to train the algorithm

Cows typically in

Penguins typicall
grassland backdrop & ypically

Photographed in snow

* What about pictures of cows on snow ? Robust
Does the network get confused due to snow !
- Can it predict if this is neither of them ? .
Generalizable

Will elephant get recognized or mislabeled due to grass ?
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What is it ? 2t Fermilab

- Lets say we train a algorithm to identify cows vs penguins

* We use the photos of cows and penguins to train the algorithm

Needs to learn this !
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What is it ? 2t Fermilab

- Lets say we train a algorithm to identify cows vs penguins

* We use the photos of cows and penguins to train the algorithm

Needs to learn this !

What if it learnt this ?
How do we prevent it ?
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Nuisance Randomized Distillation #

- Penalize mutual information
+ Input (ry, Y, [Z, 2]) to critic model (¢), a simple MLP

- Approximates the mutual information, use this to penalize the loss

X: Inputs
- Critic is trained to differentiate
@ Z: Nuisance,Y: label (re Y, Z) vs (1, Y, Z)
Classifier » Critic model is updated for
every batch of the classifier
r(x): N-1 Layer training

\r(X),Y,[Zi]/ * It is proxy as the likelihood

Output Critic approximator
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Nuisance Randomized Distillation #
» Training

» Train and update critic model for every batch of classifier training

X: Inputs
- Critic is trained to differentiate
@ Z: Nuisance,Y: label (re Y, Z) vs (1, Y, Z)
Classifier » Critic model is updated for
every batch of the classifier
r(x): N-1 Layer training

\r(X),Y,[Zi]/ * It is proxy as the likelihood

Output Critic approximator

Pylry: Y. [Z,2]) >

L =w CE(Ypred’ Ytrue) —4 log
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Nuisance Randomized Distillation #
» Training

» Train and update critic model for every batch of classifier training

X: Inputs
@ Z: Nuisance,Y: label 250 e F
[ Top [OOD] -
o 2.0F -
Classifier =
| 5 1.5F -
r(x):N-I Layer | & | ,
/ § 10 :
N\ 5 | |
\r(x),Y,[z,Z] / g -
Output Critic 0.0 .
A
p¢(rX7 Y,[Z,7]) Represntation dim. #1
P =w CE(Yp,,ed, Y,..) —Alog =,
e
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Nuisance Randomized Distillation
- OOD Detection:

o
L. 2

» Outlier Dataset: Top quarks jets

» Use representations to build anomaly metrics

X: Inputs * Metrics:
. Nu Y- Tabel » Calculate the distance from
ah Lo samples in representation space

Classifier dy = (ry = Hy) ZZI (ry — ﬂA)T

r(x): N-1 Layer

- Obtain distance from all BKG

N samples
\r(x),Y, [ Z7Z ]/

* Here: [dQCD’ dWZ]

Output Critic
pys(rx. Y. [Z, VA) - Use this to find anomalies
Zz=w CE(Ypred’ Ytrue) — 4 log
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Nuisance Randomized Distillation -_“_-'.“.'
- OOD Detection:

» Outlier Dataset: Top quarks jets

» Use representations to build anomaly metrics

X: Inputs * Metrics:
T . - Obtain distance d, from all BKG
Z: Nuisance,Y: label samples
Classifier + Here: [docp. dy]
r(x): N-1 Layer - Alternative Metrics:
N + Max(Logits) also serves as a OOD

@ (.Y, [Z,Z] Score

Output Critic + Max Logits (OOD) < Max Logits (BKG)

p¢(rX7 Ya [Za Z]) )

Zz=w CE(Ypred’ Ytrue) — 4 log
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