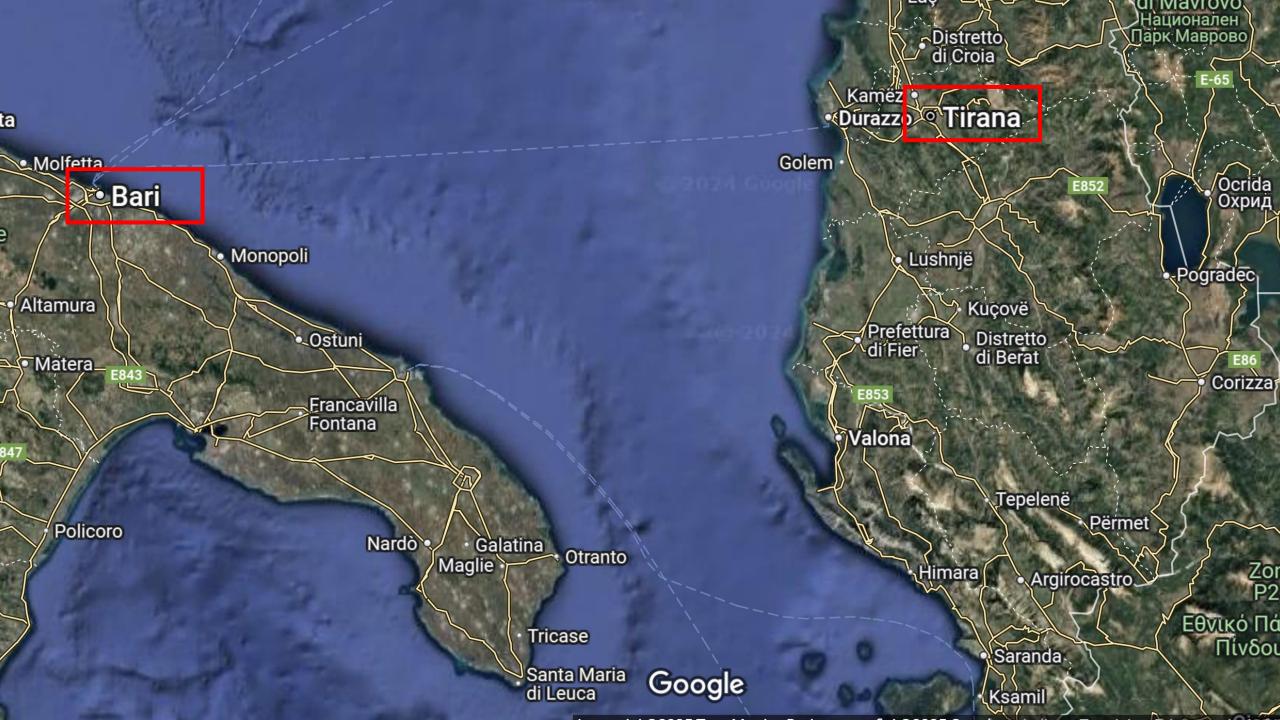


Dipartimento Meccanica Matematica Management MUR Dipartimento di Eccellenza 2018-2022 2023-2027

"Data Science Applications in Physics"

Winter School in Tirana 2025

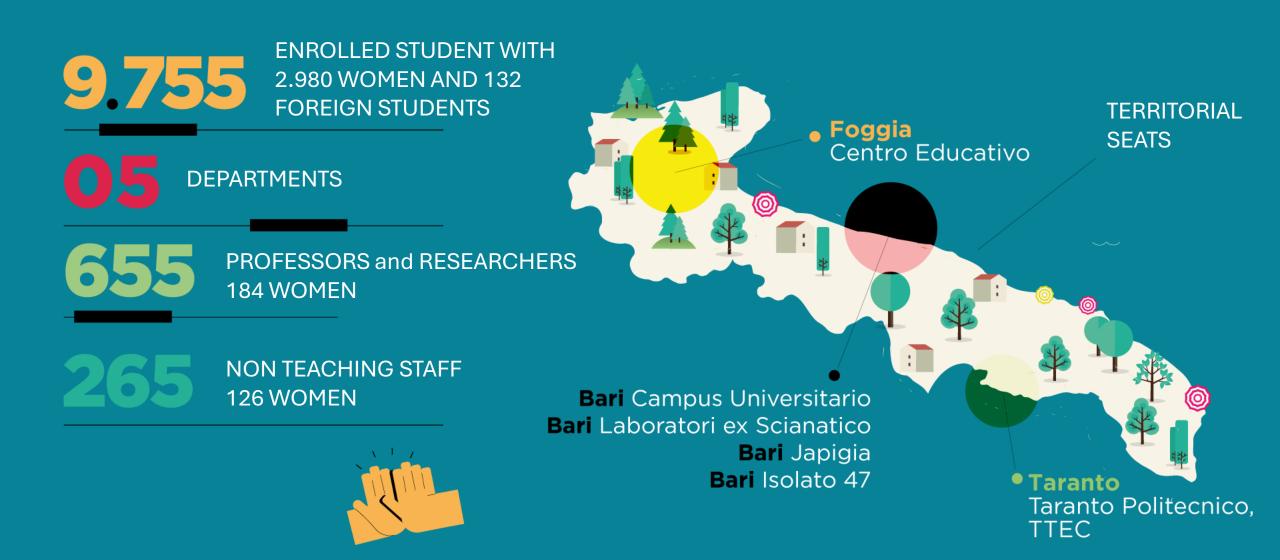


Optical and Interferometric Methods for Material Characterization and Dimensional Analysis

Mon 27th January 2025

Giovanni Pappalettera

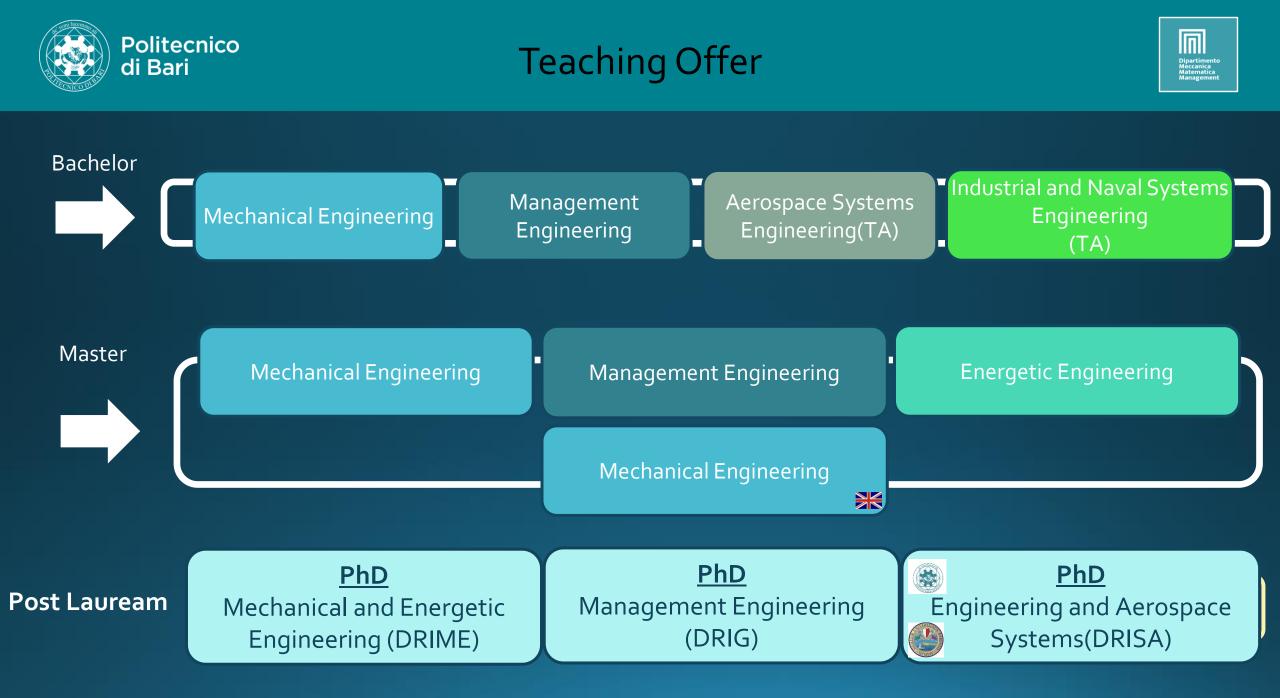
Faculty of Natural Sciences Hall 413 B - Tirana

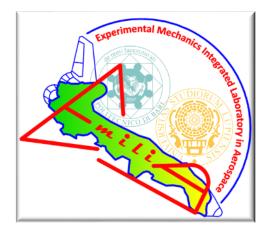


POLITECNICO DI BARI IN NUMBERS

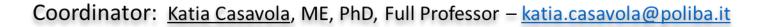
Dipartimento Meccanica Matematica Management MUR Dipartimento di Eccellenza 2018-2022 2023-2027

SEAL of EXCELLENCE DEPARTMENT


2018-2022


2023-2027

A recognition given by the Italian Ministry of University and Research Selecting among 800 University Department

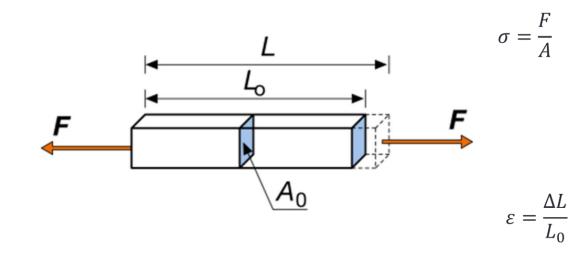

Best Ranking in the Industrial Area

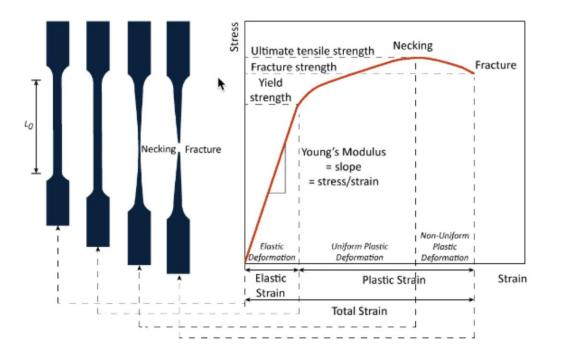
MECHANICS, MATHEMATICS and MANAGEMENT DEPARTMENT

EXPERIMENTAL MECHANICS Lab.

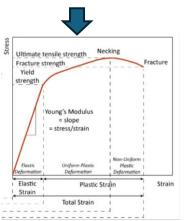
Staff: C. Barile, V. Moramarco, G. Pappalettera - Phd, Ass. Prof. / Researchers Others: 1 researcher RTDA, 3 post doc, 3 PhD students, 1 technician

Founder of the Lab: Carmine Pappalettere – Prof. Emeritus





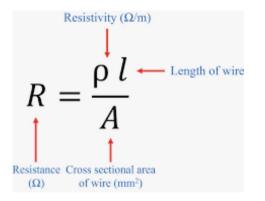
Stress and Strain

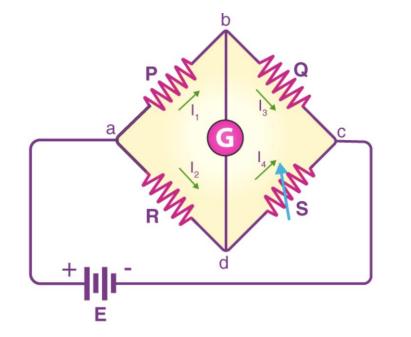

Stress

Strain

100

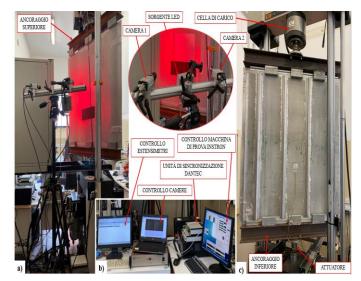
Apply Load

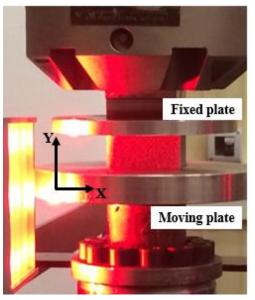

Measure Deformation

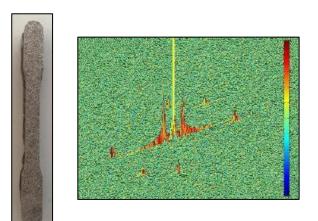


Get Stress/Strain Curve

Strain Measurement: Strain Gauge


Dimensional variation of the strain gauge change its resistivity




Strain Gauges limitations

Aluminum foam stringered panel

PU foam

Corrosion onset

PCB Board

CFRP Composite

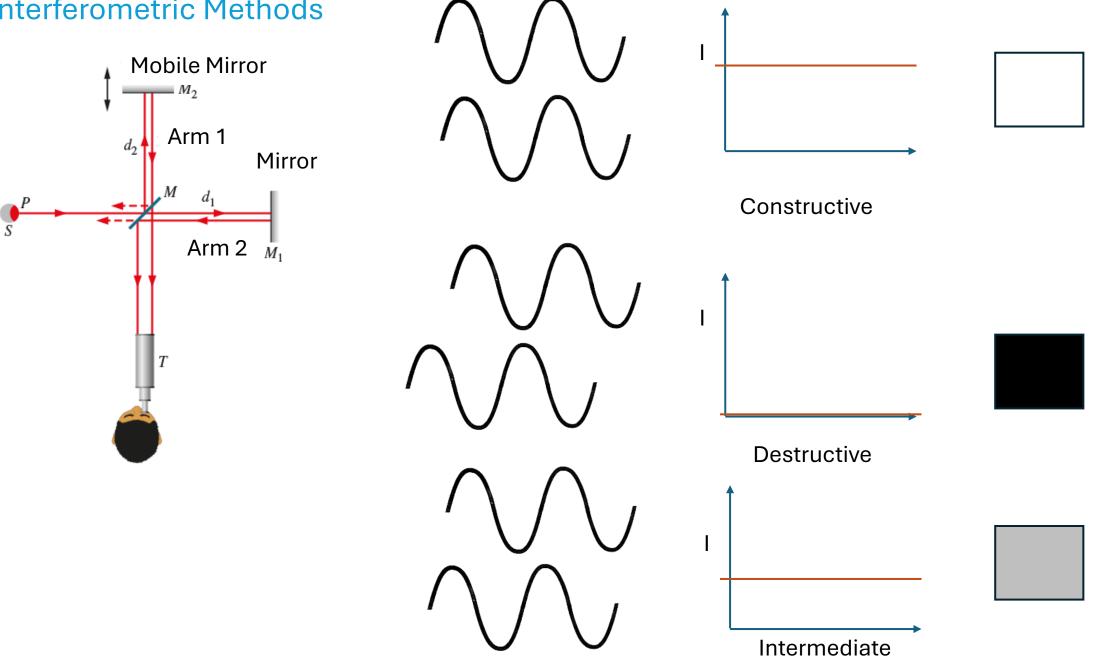
Why optical Methods?

Every time we are looking for:

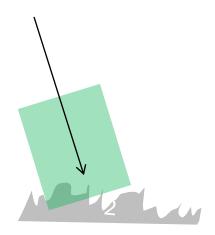
- No contact
- No destructive
- High resolution
- High sensitivity

Which optical Methods?

- Speckle Interferometry
- Moirè Methods
- Fringe Projection Methods
- Digital Holography
- Shearography
- Photoelasticity
- DIC



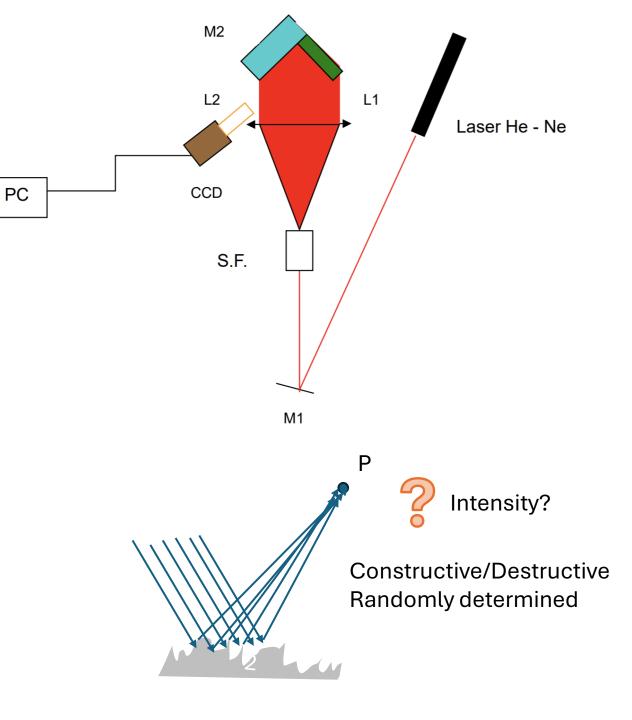
Interferometric Implementation


Non Interferometric Implementation

•••••

Interferometric Methods

Speckle Methods



Ρ

Intensity?

Constructive/Destructive

$h \longleftrightarrow \Phi$

Basic idea is the relationship between phase in the pattern and the quantity to be measured

Fringes Generated by Laser Interference

 $w(x, y, t) = a(x, y)e^{i[\Phi(x,y)]}$, This express the light wavefront at a given instant t

$$\Phi(x,y) = \frac{2\pi h(x,y)}{\lambda}$$

Phase can be express as a function of the travelled path h(x,y)

Fringes Generated by Laser Interference

Let's suppose now to have two wavefront and let's call them reference and test

$$w_r(x, y) = a_r(x, y)e^{i\left[\Phi_r(x, y)\right]},$$
$$w_t(x, y) = a_t(x, y)e^{i\left[\Phi_t(x, y)\right]},$$

Let's make them interfere on a surface

 $w(x, y) = w_r(x, y) + w_t(x, y).$

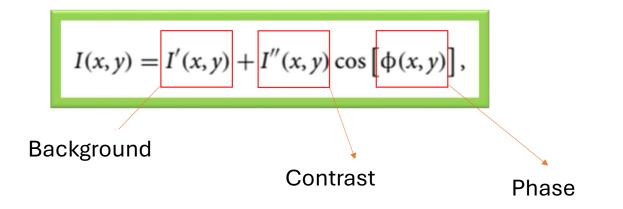
Leading to an intensity

 $I(x, y, t) = |w_r(x, y) + w_t(x, y)|^2,$

$$I(x, y, t) = I'(x, y) + I''(x, y) \cos \left[\Phi_t(x, y) - \Phi_r(x, y) \right],$$

Where

$$a_{r}^{2}(x, y) = a_{r}^{2}(x, y) + a_{t}^{2}(x, y)$$


$$\cos\alpha \cdot \cos\beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$
 We can set
$$\sin\alpha \cdot \cos\beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$I''(x, y) = 2a_r(x, y)a_t(x, y)$$

 $\phi(x, y) = \Phi_t(x, y) - \Phi_r(x, y),$

We get the fundamental equation of the fringe analysis

$$I(x, y) = I'(x, y) + I''(x, y) \cos [\phi(x, y)],$$

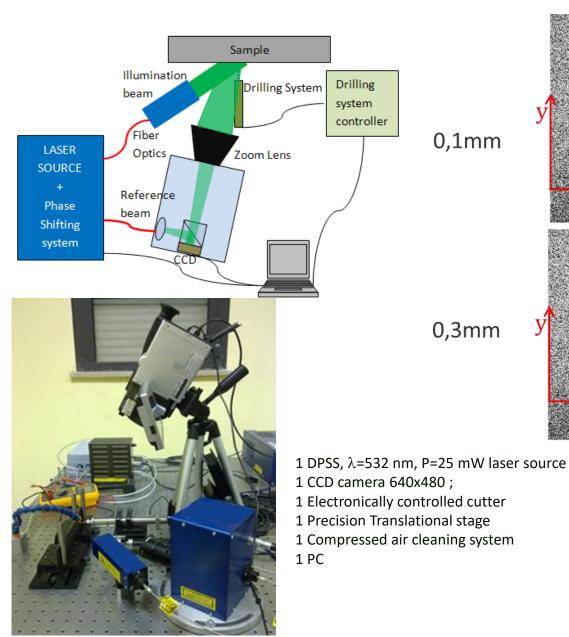
ţ.

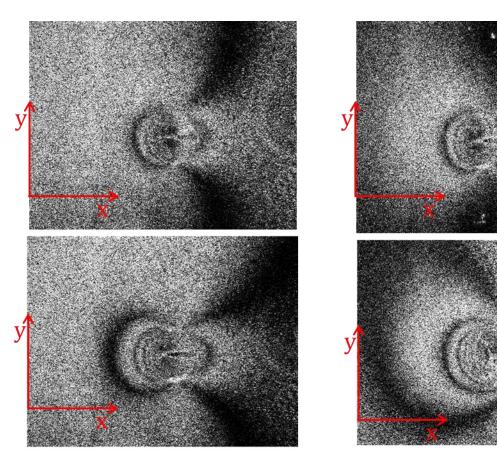
$$h(x,y) = \frac{\phi(x,y)\lambda}{2\pi},$$

 $h(x,y) = \frac{\phi(x,y)\lambda}{4\pi}.$

How I can extract the phase? PHASE SHIFTING

$$I_1(x, y) = I'(x, y) + I''(x, y) \cos[\phi(x, y) - \alpha],$$

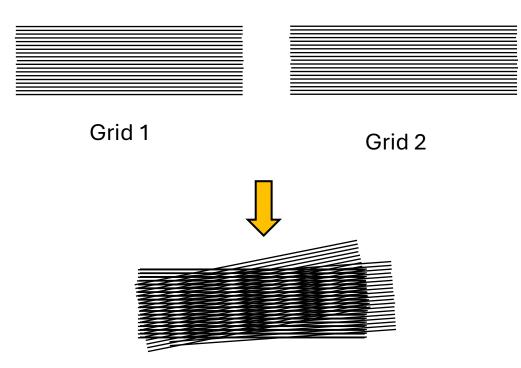

$$I_2(x, y) = I'(x, y) + I''(x, y) \cos[\phi(x, y)],$$


$$I_3(x, y) = I'(x, y) + I''(x, y) \cos[\phi(x, y) + \alpha].$$

Three Step Phase Shifting

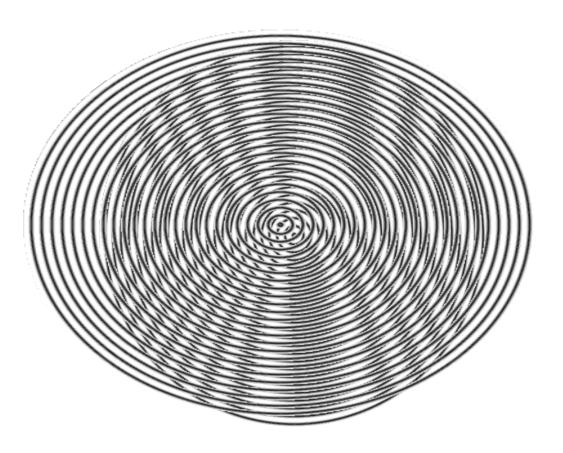
$$\phi(x, y) = \tan^{-1} \left[\frac{(1 - \cos \alpha)(I_1 - I_3)}{\sin \alpha (2I_2 - I_1 - I_3)} \right]$$

Principle of Fringe Analysis: one application



0,2mm

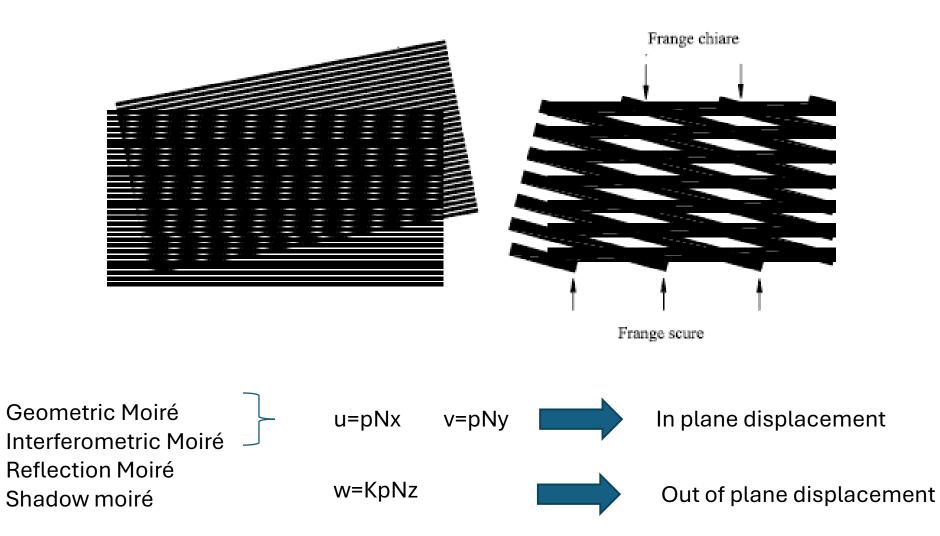
0,4mm

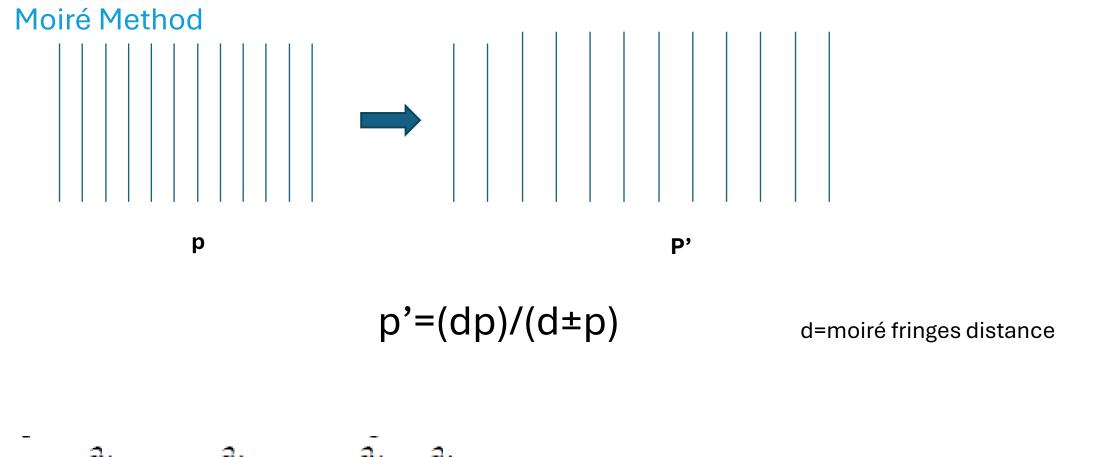

Speckle is a noise on the fringe pattern

Moiré Principle

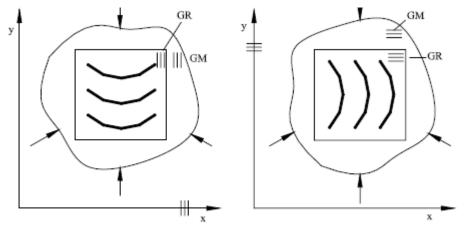
All the methods allowing to exploit this effect, overlapping even electronically these two grids are called moiré

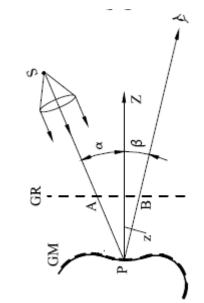
Moiré Principle

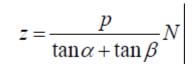

Moiré Method


•

•


•


•

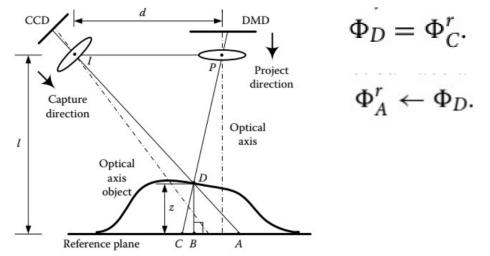


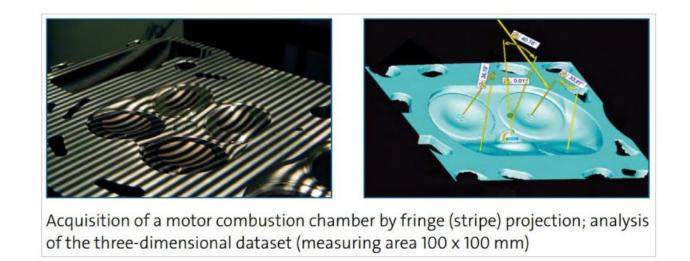
Moiré Method

$$\varepsilon_x = p \frac{\partial N_x}{\partial x}, \quad \varepsilon_y = p \frac{\partial N_y}{\partial y}, \quad \gamma_{xy} = p(\frac{\partial N_x}{\partial y} + \frac{\partial N_y}{\partial x})$$

Plane moiré

Shadow Moiré

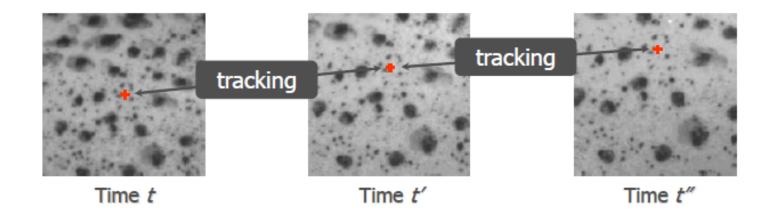

Moiré Method



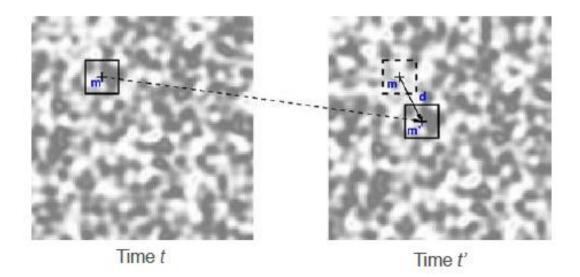
u=pNx

Interferometric Moiré

Fringe Projection Methods

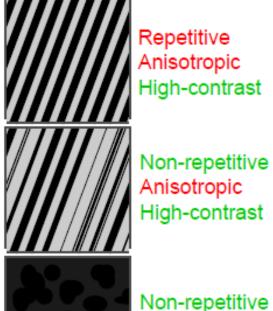

If I subtract two phase map on the object and on the phase plane I get this:

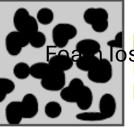
$$\Delta \Phi_{DA} = \Phi_D - \Phi_A^r = \Phi_C^r - \Phi_A^r = \Delta \Phi_{AC}^r.$$


 $DB:AC=(I-z)/d \rightarrow zd=ACI - ACz \rightarrow z(d+AC)=ACI \rightarrow z=ACI/(d+AC)$

$$z=ACI/d$$
 $z(x,y) \propto \Delta \Phi_{AC}^r = \Phi_D - \Phi_{A}^r$

 How? Given a point and its signature in the undeformed image, search/track in deformed image for the point which has a signature which maximizes a similarity function




- In practice, a single value is not a unique signature of a point, hence neighboring pixels are used
- Such a collection of pixel values is called a subset or window

DIC

- The uniqueness of each signature is only guaranteed if the surface has a non repetitive, isotropic, high contrast pattern
- Random textures fulfill this constraint (speckle pattern)

Non-repetitive High-contrast

Repetitive

Anisotropic

High-contrast

Non-repetitive

High-contrast

Anisotropic

Isotropic

Low-contrast

Stress Concentration Airbus

Clear Aligners

losipescu FOAM

		In	nage	, in m	nemo	ry 🛛				lr	nage	, on s	scree	n
100	100	100	0	0	0	100	100	100						
100	100	100	0	0	0	100	100	100						
100	100	100	0	0	0	100	100	100						
0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0						Ī
0	0	0	0	0	0	0	0	0						
100	100	100	0	0	0	100	100	100						
100	100	100	0	0	0	100	100	100						
100	100	100	0	0	0	100	100	100						

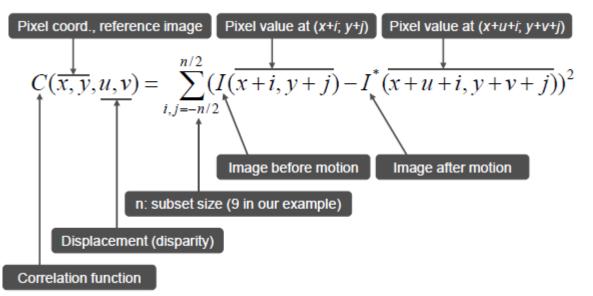

	Ima	age a	ifter r	notio	n, in	mem	ory		
100	100	100	100	0	0	0	100	100	Г
100	100	100	100	0	0	0	100	100	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
100	100	100	100	0	0	0	100	100	
100	100	100	100	0	0	0	100	100	
100	100	100	100	0	0	0	100	100	
100	100	100	100	0	0	0	100	100	

Image after motion, on screen

 	_	 _	_	_	 _

		Ima	age b	efore	e moi	tion		Image after motion									
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	100	100	0	0	0	100	100	100	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	o	0	0	0	0		U	?	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	100	100	100	100	0	0	0	100	100
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	100	100	0	Subset 0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	0	100	100

Example: subset at (x;y)=(5;5), displacement candidate (u;v)=(-2;-2)

$$C(5,5,-2,-2) = \sum_{i,j=-2}^{2} (I(5+i,6+j) - I^*(5-2+i,5-2+j))^2$$

 $(100-0)^{2} + (0-0)^{2} + (0-0)^{2} + (0-0)^{2} + (100-0)^{2} + (0-10$

100	100	100	0	0	0	100	100	100	100	100	100
100	10	(x;y)=	=(5;5) \)	0	100	100	100	100	100	100
100	100	100	0	0	0	100	100	ਡ਼	0	0	0
0	0	0	0	0	0	0	0	Image b	0	0	0
0	0	0	0	0	0	0	0	before	0	0	0
0	0	0	0	0	0	0	0	motion	100	100	100
100	100	100	0	0	0	100	100	Î	100	100	100
100	100	100	0	0	0	100	100	100	100	100	100
100	100	100	0	0	0	100	100	100	100	100	100

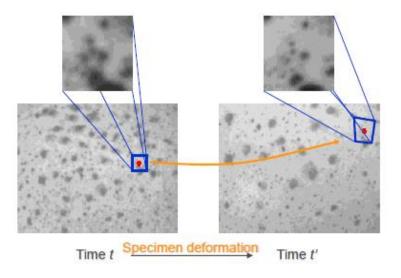
	100	100	100	100	0	0	0	100	100
	100	100	100	100	0	0	0	100	100
	0	0	0	0	0	0	0	0	Π
l	0	0	0	0	0	0	0	0	mage after motion
l	0	0	0	0	-0	0	0	0	after
l	100	100	100	100	0	0	0	100	moti
	100	100	100	100	0	0	0	100	ß
	100	100	100	100	0	_0	0	100	100
	100	100	100	100	0	ູ(ບ	l,V)=(∪	(-2;-2 100) 100
- 1									

- Example: subset at (x;y)=(5;5), displacement candidate (u;v)=(1;1)
 C(5,5,1,1)=0
- Better correlation score than candidate (u;v)=(-2;-2) [18,000] Indeed it is the smallest score achieveable (perfect match)

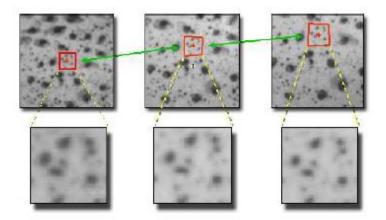
	1	1	1	1	1	I	1			1	1	1	1	1		1	1
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	10	(x;y)=	=(5;5) \) 0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	100	100	0	0	0	100	100	ਭੂ	0	0	0	0	0	0	0	0	Ξ
0	0	0	0	٥	0	0	0	Image b	0	0	0	0	0	0	0	0	lage :
0	0	0	0	0	0	0	0	before	0	0	0	0	0	→ ₀ *	0	0	after
0	0	0	0	0	0	0	0	motion	100	100	100	100	0	0	0	100	Image after motion
100	100	100	0	0	0	100	100	Î	100	100	100	100	0	0	þ	100	ß
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	⁰ /	100	100
100	100	100	0	0	0	100	100	100	100	100	100	100	0	. (u,v)− ∪	(1;1) 100	100

C(5,5,1,1)=0

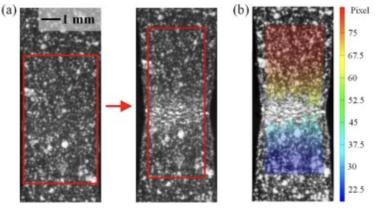
Perfect Match!

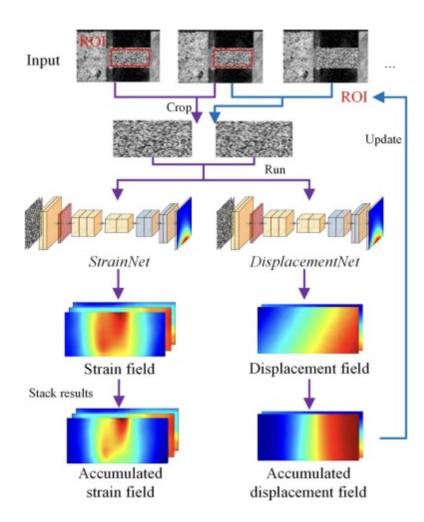

DIC

		Ima	age b	efore	e mot	tion					In	age	after	moti	on		
103	101	99	2	0	1	105	100	96	99	100	101	102	3	0	2	100	102
101	104	98	1	4	3	101	98	100	101	97	98	101	1	2	0	96	102
103	96	99	0	2	2	102	103	98	0	1	3	3	2	0	1	2	0
2	3	0	1	1	2	3	0	1	1	0	3	0	2	1	1	0	3
1	3	3	0	2	1	0	3	0	1	3	2	0	1	1	2	2	0
0	0	2	0	3	0	2	0	0	101	100	100	103	0	2	1	102	101
98	101	102	0	1	0	96	97	102	97	99	100	101	3	2	0	97	101
97	98	103	0	2	0	103	98	100	101	103	98	101	0	1	1	99	96
102	99	101	2	0	0	104	102	101	102	99	96	103	2	3	3	102	100

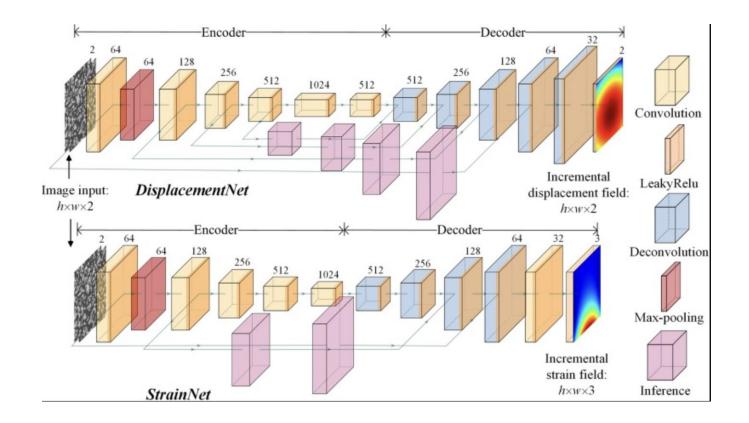

Best Match!

DIC


- General circumstances:
 - The subset in the deformed image has changed shape, e.g. a square initial subset is likely to be nonsquare

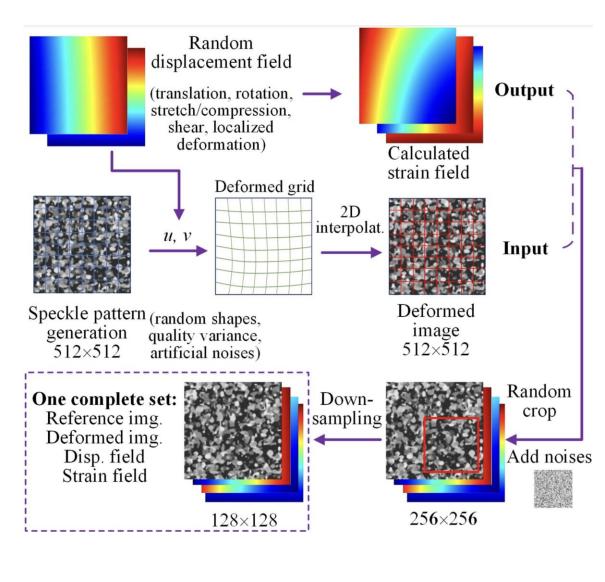

 Solution: model this displacement transformation (called subset shape function) and use it to define the deformed subset

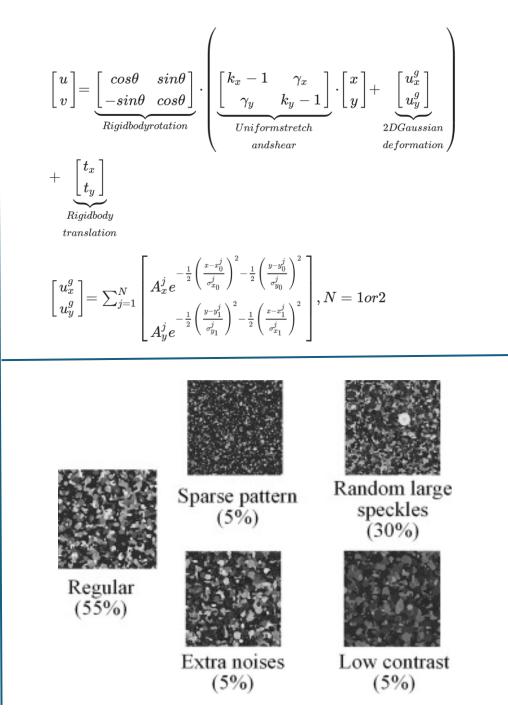
- Improve Computational Time going toward real time evaluation
- Reduce error in calculating strain from displacement
- Manage with issue at high deformation up to paint breaking

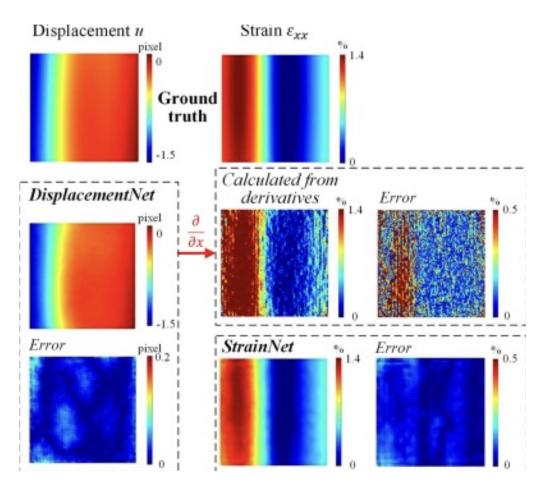


Ru Yang, Yang Li, Danielle Zeng, Ping Guo, Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement. Journal of Materials Processing Technology, 302, 2022

Three ideas:

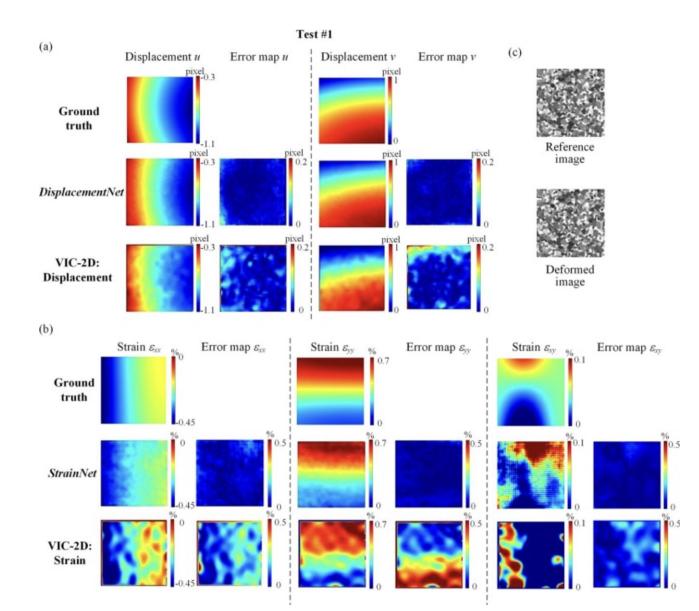

- Two separate net for Displacement and Strain
- Displacement and Strain Calculated in the incremental way
- Accumulated displacement is used to update the ROI




Using an encoder decoder architecture and Giving two input images (reference and calculation) you have:

Two displacement fields

Three strain fields

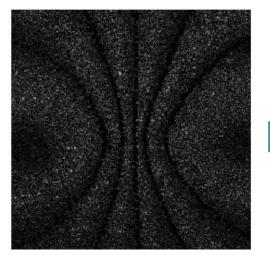


Calculated Strain Error Max: 5.93% Avg: 0.24 %

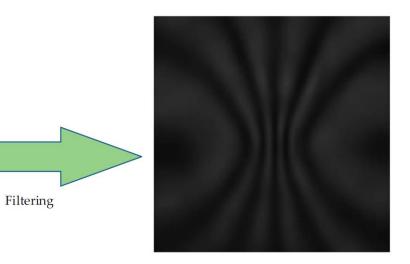
Strainnet Error Max: 0.11 % Avg: 0.018 %

Error in Strain Determination is reduced

But still not proved to manage large deformation at once

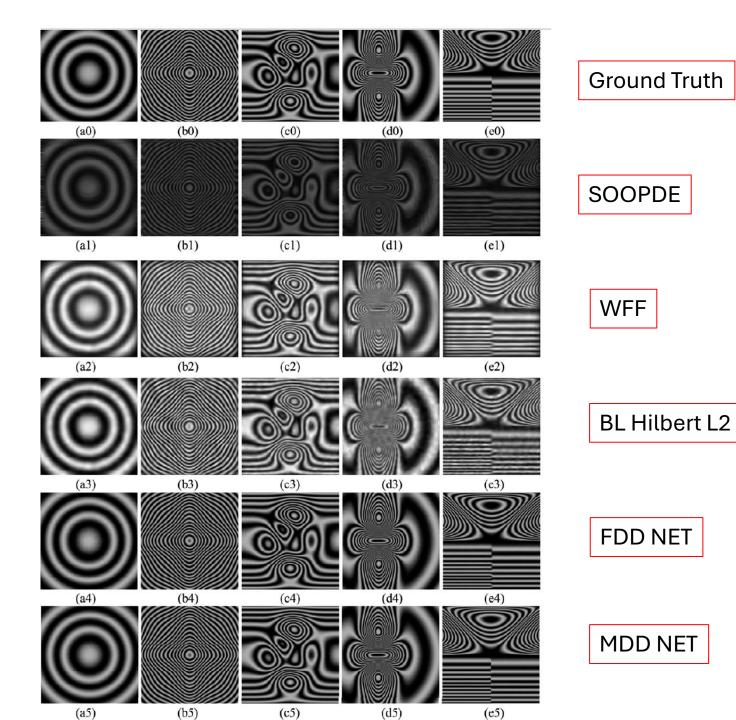


Higher accuracy both on displacement and Strain with respect to VIC-2D software


Other comparison can be done in terms of Calculation time When applied to a sequence of 189 images The net time for VIC 2D software was 27 s

Time for Deepnet was 2.35 s

https://github.com/RuYangNU/Deep-Dic-deep-learning-based-digital-image-correlation


ESPI fringe pattern

ESPI fringe pattern after filtering • Denoising is a process which is slowing the measurement chain

- When dealing with complex fringe pattern Global optimum denoising can hyde some Local features
- Poor generalization

Wenbo Jiang, Tong Ren, Qianhua Fu Zeng, Deep Learning in the Phase Extraction of Electronic Speckle Pattern Interferometry. Electronics, 13(2), 2024

- Higher Contrast
- Higher Denoising
- Better shape Preservation

Xu, M.; Tang, C.; Hong, N.; Lei, Z. MDD-Net: A generalized network for speckle removal with structure protection and shape preservation for various kinds of ESPI fringe patterns. Opt. Lasers Eng. 2022, 154, 107017.

Dipartimento Meccanica Matematica Management MUR Dipartimento di Eccellenza 2018-2022 2023-2027

Thank You For Your Attention!

giovanni.pappalettera@poliba.it