Active control in Nanophotonics for Super-resolution Imaging

Bergin Gjonaj

Acknowledgments

Asaf David Yochai Blau Doron Shterman Guy Bartal APRL Group

Jochen Aulbach Patrick Johnson Allard Mosk Kobus Kuipers Ad Lagendijk

Electrical Engineering Computers Computers

Outline

Background

- Microscopy over time
- Nanophotonics promises for microscopy
- Control shaping optical wavefronts

Proof of concept for new microscopy

- Controlling nanophotonic/plasmonic wavefronts
- Focusing and scanning microscopy

□ Super-resolution

- Platforms for super-resolution
- Silicon Plasmonics

Microscopy

We started like this

Bright field

Dark field

TIRF

Confocal

Structured illumination

□ Two different gratings generate a third one

If resolution does not allow to resolve one of the gratings, You can still deduce it from the other two.

Near field Probes

No more lenses

- Detect with a scanning probe
- Resolution is given by the probe size

Near – field techniques

Scattering NSOM Light collected by lens/parabolic mirror

Advantages:

Resolution (~2-20 nm)

Disadvantages:

Far field |Bacground Scanning Sample

Aperture NSOM Light coupled into optical fiber

Advantages:

No Background

Disadvantages:

Limited resolution (~100nm)

Single molecule localization

□ If two single molecules are well separated in *space*

You can localize them by their center of mass

PALM, STORM

STED

If molecules are separated in time or space You can sum up an image (switching, activating)

Computer Rendering

Single Molecule Image

Round 2

Computer Rendering

If molecules are separated in *energy* You can scan an image (saturation, depletion)

Hell et al, Optics Letters 1999

Betzig et al, Science 2006

Outline

Wavefront shaping in Nanophotonics (spatial resolution)

- Controlling waves in nanophotonic systems
- Focusing and scanning microscopy / Super-resolution
- Goal: towards nanolocalized Raman excitation

❑ Wavefront shaping in scattering media (spatio-temporal)

- Controlling speckle in time
- Spatio-temporal focusing at targets
- Goal: towards burning/imaging targets inside tissue

Optical microscopy: optimizations

• Optics

Oil/water immersion objectives

Illumination

Dark Field, Phase Contrast (DIC) Total Internal Reflection (TIRF) Optical Coherence Tomography (OCT) Structured Illumination (SIM)

Detection

Fluorescence, Confocal, Near-Field

Light-matter interaction STED, PALM, STORM Nonlinear, Photo-acoustic

The microscope slide

The generalized microscope slide

Conventional

- Passive, compensated
- Cheap and standard

Nanophotonic More Control!

- Active, focusing, filtering
- Super, hyper, meta lens

Natural

More Control!

- Omnipresent, random, light scattering
- Thin slicing *ex-vivo*, other waves

More control in Nanophotonics

Hillenbrand group (Nat Photon, 2012)

Resolution

- Hot spots 10 100 nm
- Fixed, No imaging

Required control

Image formation

Choo, Yablonovitch (Nat Photon, **2012**)

Novotny & Van-Hulst (Nat Photon, 2011)

Why do you need new microcopies?

- Applied latest transistors at 20nm
 Cannot be fluorescently labeled
- Fundamental spectroscopy
 The spatial distribution provides the WHAT
 You need spectroscopy to provide the HOW

14 nm Process

14 nm 2nd Generation Tri-gate Transistor

The slide is the lens

Metamaterial slide

- Negative refraction materials
- Perfect lens
- Hyperbolic material
- Hyper lens
- **Plasmonics**
 - Short wavelengths
 - Plasmonic lens

Little success in bio imaging – We need more control!

Wavefront Shaping – new control

Control the incident wavefront

- Use a spatial light modulator to shape the front
- Use feedback to find the right wavefront
- Achieve focusing from scattering media (paper)
- Achieve focusing to a different spot

Vellekoop, Opt. Lett. (2007)

The wavefront control

10 000 channels

Nanophotonics wavefront control

Is wavefront control in nanophotonics applicable for microscopy?

Surface Plasmon Polaritons (SPP)

- Surface waves
- Evanescent waves
- Metal-dielectric interface
- Sensing, SERS, Q. optics

Compared to photons:

- Same energy (color)
- Shorter wavelength
- Momentum mismatch

Plasmonics for microscopy

- Shorter wavelength
- Better focusing
- Improved resolution

Plasmonic wavefront shaping

Gjonaj, Nature Photonics (2011)

Amplitude design: bare gold

Resolution: 450 nm

Launching SPPs: hole array

- □ SPP plane waves propagate into the SPP arena
- Polarization dependency
- Formation of a standing SPP wave

Fringes and gratings

425 nm

400 nm

375 nm

Fringe periodicity = $0.5^*\lambda_{SPP}$ = 300 nm

Shift & tilt of the fringes (SSIM)

Gjonaj, Nano Letters (2012)

SPP focusing

The SPP focus (with feedback)

Relocating the focus

Everywhere inside the SPP arena

Gjonaj, Nature Photonics (2011)

Implementation: microscopy

Gjonaj, PRL (2013)

Nanostructered microscope slide

 		00000		0000
 Street and Start			•	
			•	
			•	
			• •	
 •	00			
	00			00

Concept – Scanning the focus

Plasmonic 2D imaging

Focusing and scanning

White light illumination

Overlap with SEM image

Enhancing the focusing/resolution

Deconvolution

White light illumination

Possible read-outs

- Single shot
- Integrated intensity : excitation psf
- Pixel in the focus

- : detection psf
- : confocal psf

Imaging point spread functions

Gjonaj, PRL (2013)

Reorganizing our thoughts

Concept

- Simple scanning a focus to achieve imaging
- Nice does not require labeling
- Competitive delivers energy locally (nano-spectroscopy)

Resolution

- Lensing From 450nm objective to ~ 200nm. Great
- Wavelength From 633nm to ~ 600nm plasmonic. (n=1.1)
- Maturity STED, PALM, STORM ~ 20nm. Unfit

Improved waveguides – Si Nitrite

Next: New nanophotonics platforms

- 1. Wavelength From 633nm to ~ 180nm. (**n=3.5**)
- 2. Losses Propagation length > 1 micrometer.
- 3. Interaction Should excite a probe or a bio molecule

Near field measurements

Gjonaj, David et al Nano Letters (2014)

2 um

Wavelength 240nm; focus 66 nm

Gjonaj, David et al Nano Letters (2014)

Improved waveguides – Si Nitrite

- 1. Wavelength From 600nm to ~ 240nm. Almost there
- 2. Losses Propagation length < 1 micrometer.
- 3. Interaction Should excite a probe or a bio molecule

Super-resolution in Silicon domain

Bulk Silicon

- Refractive index ~ 3.5
- Connection to Si Photonics
- Connection to lithography
- Absoption in the visible
- Hard to harvest light

Thin Si waveguide

- Transparent
- Guided modes in 2D
- Propagation up to 10 um

IBM Research

Focusing with Silicon

David, Gjonaj et al Optica (2015)

Hybrid photonic plasmonic modes

Oulton et al Nat Photon (2008)

Resolution: contrast or size?

Si	-	SiO ₂	-	Ag
60	-	8	-	300 nm

Wavelength 220 nm Propagation 5.3 um Size (FWHM) 78 nm

Si	-	SiO ₂	-	Ag
60	-	4	-	300 nm

Wavelength 184 nm Propagation 3.3 um Size (FWHM) 66 nm

Phase

David, Gjonaj et al Optica (2015)

Tunability: better contrast focusing

Tunability: better size focusing

Orbital angular momentum (spiral)

Spiral lens & circular polarization

- Angular momentum spiral = -1
- Angular momentum polarization = 1
- Net angular momentum L = 0

Orbital angular momentum (circle)

Circular lens & circular polarization

- Angular momentum circle = 0
- Angular momentum polarization = 1
- Net angular momentum L = 1

 $E(\rho,\theta) = J_1(k\rho) * e^{i\theta}$

David, Gjonaj, et al PRB (2016)

Nano vortex relevance

- Optical vortices are well known and used
 - Hasman, et al Nano Letters (2011)
- Nano vortices are new

- The size (60 nm) is comparable with quantum systems
- For example Quantum Dots
- Beyond the dipole transition
- Accessing new transitions (dipole prohibited)

David, Gjonaj, et al PRB (2016)

Joining efforts

❑ Active wavefront control

- Raster scanning (focus or vortex)
- Far field microscopy
- Flexibility

□ Silicon waveguides

- Wavelength 184 nm
- Propagation 3.3 um
- Resolution
 66 nm
- CMOS compatibility AI

Take home messages

- Microscopy is continuously growing
 - Nanoscopy is an actuality
 - Limitations: Fluorecent labelling, invasiveness
 - Open questions : Chips, nanospectroscopy (i.e. Raman)
- **J** Wavefront shaping is flexible control
 - Microscopy by focusing and scanning (label free)
 - Deliver energy suitably for spectroscopy
- **Resolution is enhanced in Photonic 2D waveguides**
 - Static focusing to ~60 nm with reasonable contrast
 - Tunable by material properties (resolution, losses, CMOS)

Upgrading an existing microscope

Multiplexed imaging

How to achieve it

The generalized microscope slide

Conventional

- Passive, compensated
- Cheap and standard

Nanophotonic More Control!

- Active, focusing, filtering
- Super, hyper, meta lens

Natural

More Control!

- Omnipresent, random, light scattering
- Thin slicing *ex-vivo*, other waves

Optical bioimaging – label free

D. Soliman, et al, Sci. Rep. (2015)

Ntziachristos group

Bypassing diffusion (space – time)

Acoustics

M. Fink, IEEE (1992)

A. Derode, et al, PRL (1995)

Microwave

G. Lerosey, et al, PRL (2004)

G. Lerosey, et al, Science (2007)

Optics (monochromatic)

S. M. Popoff, et al, PRL 2010

Optics (pulsed)

D. J. McCabe, et al, Nat Com (2011)

J. Aulbach, et al, PRL (2011)

O. Katz, et al, Nat Photon (2011)

Acoustics

optics

to

Johnson, et al. Phys. Rev. E (2003)

Fink, et al. Rep. Prog. Phys. (2000)

Bypassing diffusion (space – time)

Aulbach, Gjonaj, et al, Phys. Rev. Lett. (2011)

Time focusing

Aulbach, Gjonaj, et al, Phys. Rev. Lett. (2011)

Space-time addressing of targets

Second Harmonic particles (size 200 nm)

Aulbach, Gjonaj, et al, Opt. Exp. (2012)

Space-time focusing

Aulbach, Gjonaj, et al, Opt. Exp. (2012)

Part. #	$\tau_{pulse}(fs)$	η _{exp}	η_{model}	η _{cw}
1	110	$2.5 \cdot 10^{2}$	$3.1 \cdot 10^{2}$	$1.6 \cdot 10^{4}$
2	102	$0.7 \cdot 10^{2}$	$3.2 \cdot 10^{2}$	$1.7 \cdot 10^{4}$
3	111	$2.7 \cdot 10^{2}$	$2.7 \cdot 10^{2}$	$1.4 \cdot 10^{4}$
4	104	$0.7 \cdot 10^{2}$	$2.9 \cdot 10^{2}$	1.5 · 10 ⁴
5	109	$3.0 \cdot 10^{2}$	$3.8 \cdot 10^{2}$	2.0 · 10 ⁴
6	109	$5.5 \cdot 10^{2}$	$6.5 \cdot 10^{2}$	$2.4 \cdot 10^{4}$

The enhancement, η , depends on the SLM segmentation.

We contained the SLM segmentation to N = 800, because above it (N > 1000) the particles are burned and destroyed

Biomedical opportunities

Depth ~ 10 - 100 mean free paths

Tissue equivalent 0.1 - 5 cm

- Can we burn inside? Nanoparticle labelling ?
- Can we image inside (THG)? Focusing and memory effect?

Human brain tumour (dark) Intra-operational THG image (40 mW)

Intra-operational (in depth)

- High tumour density: CUT MORE
- Low tumour density: CLOSE UP
- Early stage (in depth)
 - Degeneration: YES/NO

Kuzmin, et al, Biomed. Opt. Express. (2016)

The right feedback

Challenges/requisitions:

- Diffusion of light by tissue
- Local power delivery
- Specificity tumours only
- Photoacoustic contrast
 Multi-sensorial (light, sound)
 Single detector (image-free)
 Only optical diffusion

Ant-burning of tumours

Submitted VIDI proposal

Therapy, imaging & sensing

Photoacoustics space-time focusing:

Contrast agents: Hemoglobin – brain, eye, breast

Melanin – skin, lymph nodes, circulating tumor cells

External – dyes, plasmonic particles

- Imaging : SHG, THG, (memory effect high res, limited range)
- Sensing: Oxygen saturation of Hemoglobin (sO₂), temperature

One case of success is sufficient!

Conclusions

Generic

- Microscopy is important and is challenging
- 'SIM is the future' *Betzig said.*
- **Specific to this work**
 - High index materials (n>3) are great for SIM
 - A double Moire illumination is the way to go
 - 5x better resolution (down to 45nm)
 - Relatively simple and fast
 - The required control is feasible