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Machine learning: definition

.
“Machine Learning: Field of study that gives
computers the ability to learn without being
explicitly programmed.”  -Arthur Samuel (1959)

“Learning is any process by which a system improves
performance from experience.”

- Herbert Simon




Comparison of different approaches
B

Traditional programming

Data
— Output
Program

Machine learning
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When Do We Use Machine Learning?
.

ML is used when:

e Human expertise does not exist (navigating on Mars)
e Humans can't explain their expertise (speech recognition)

e Models must be customized (personalized medicine)
e Models are based on huge amounts of data (genomics)
¢ Fundamental science > HEP

Learning isn’t always useful:
e Thereis no need to “learn” to calculate payroll



More examples of tasks that are best solved by using ML
.

e Recognizing patterns:

— Facial identities or facial expressions
— Handwritten or spoken words
— Medical images

e Generating patterns:
— Generating images or motion sequences

e Recognizing anomalies:
— Unusual credit card transactions

— Unusual patterns of sensor readings in a nuclear power
plant

e Prediction:
— Future stock prices or currency exchange rates



ML applications

N. De Filippis

Web search

Computational biology
Finance

E-commerce

Space exploration

Robotics

Information extraction

Social networks

Debugging software
Fundamental Science > HEP




Type of Learning

« Supervised (inductive) learning

— Given: training data + desired outputs
(labels)

« Unsupervised learning

— Given: training data (without desired
outputs)

« Semi-supervised learning

— Given: training data + a few desired
outputs

» Reinforcement learning

— Rewards from sequence of actions
B
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Supervised Learning

.
The goal of supervised learning is

to learn a model from labeled
training data that allows us to make
predictions about unseen data.

Labeled Data
OO Prediction -
< > ‘.' _l_>
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W
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Model Training
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O — Test Data

Hexagon Square
Triangle
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Supervised Learning: Regression

The goal of the

regression is the
prediction of

continuous outcomes
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Supervised Learning: Regression
.

e Given (Xll Y].)I (XZI YZ)I nery (an Yn)
e Learn a function f(x) to predict y given x
— vy is real-valued == regression
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Data from G. Witt. Journal of Statistics Education, Volume 21, N
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Supervised Learning: Classification

» The goal of the classification is to predict the Y A
categorical class labels of new data based on past e ClassA
observations. Examples are:

 EMAIL SPAM: binary classification

« HANDWRITTEN DIGIT RECOGNITION: multiple
class classification

Class |

N. De Filippis 11



Supervised Learning: Classification

o Given (Xy, Y1), (X2, Y2), «vy (Xny Y
e Learn a function f(x) to predict y given x

— VY is categorical == classification

Breast Cancer (Malignant / Benign)

1(Malignant) 1
T o0 O 060
0(Benign)
00— —00@ >
Tumor Size

Predict Benign | Predict Malignant
Based on example by Andrew Ng Tu mj r Si
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Unsupervised Learning
.

N. De Filippis

The goal of unsupervised
learning is to explore the
structure of data in order to
extract meaningful
information without the
guidance of a known outcome
variable or reward function

Clustering: organize
information into meaningful
subgroups (clusters) without
having any prior knowledge
of their group memberships

Dimensiondlity Reduction




Unsupervised Learning

B
o Given Xy, X3, .., Xn (without labels)
e Qutput hidden structure behind the x’s

— E.qg., clustering

A
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Unsupervised Learning
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Unsupervised Learning

e Independent component analysis — separate
a combined signal into its original sources

Speaker 1 . i‘”,f ﬁif‘i‘: iﬁt

o a7 Speaker 1
:-";:f;g-ié- jl_';'. 4 Recovered
L AW WL
E‘\- i '||I III.' . : ::".:‘IWEI . . ||‘r
W\ ~
Speaker 2 | \
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e SR A TV T
S Speaker 2
ﬁ e Recovered

WA
Image credit: statsoft.com Audio from
http://www.ism.ac.jp/~shiro/research/blindsep.html
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http://www.ism.ac.jp/~shiro/research/blindsep.html

Reinforcement Learning

A/

Agent
slate reward action

s, | IR, A

| o Renr
5. | Environment
& \

The goal of reinforcement
learning is the development
of a system which improves s PACMAN GAME

by interacting with the
environment
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Reinforcement Learning

e Given a sequence of states and actions with
(delayed) rewards, output a policy

— Policy is a mapping from states - actions that
tells you what to do in a given state

e Examples:
— Credit assignment problem
— Game playing
— Robot in @ maze
— Balance a pole on your hand

N. De Filippis 18



Learning algorithm and Artificial neuron or Perceptron

.
O  For our purpose we define a learning algorithm (LA) as a composite entity including:

a data set, for which we search for patterns

a model (for our discussion here, this will be represented by weights)
an optimisation algorithm (a recipe to adjust/change weights)

a loss function

LA is able to learn based on the data that is ,given” to it

O O OO oo

To be able to describe the learning process in quantitative way we define, on top of the previous
notions, Experience, Class of Tasks and Performance Metric

G e 0 1943 with McCullock-F

Cell body model

L > /. O Motivated by biological
{W y %LL */AP/%
< Signal A
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%
*
inputs

/ //?{ ) ’ @\weights
: §J§

direction
Axon hillock Axon —_—>

Presynaptic cell \ : /' /K—; wy ::,e,:?hted unit step function
Myelin sheath terminals ﬂ, (s\@ynaptic cell @\
Learing 5. i N — @
X3
U Perceptron equation B /
: . . j=k , X
z® = wyx® + wyx® 4 o 4 waD = Z wjxj(l) = wTx® t1ifz> 8



The algorithm

0 The perceptron algorithm, then goes like that: |
0 Initialise the weights vector to 0 or ,,something small”
2 For each training data sample ¥ do: |

0 Get the output value (class label) ¥, using the umt ste
function |

0 Update the weights accordingly (update concerns all the
weights in one go)

w; = w; + Aw; \

2 We can wrltgw 0 (y® - y®) - 2

0 The second formula is called perceptron learning rule, a
| called the learning rate (just a number between 0 and 1

N. De Filippis 20



Feed-forward neural networks
.

e Learning can be viewed as using direct
or indirect experience to approximate " ) ;
a chosen target function. Faw)= +;"’f anh 4, +;”~"‘:

[
T 1+exp[-f(x,w)]

e Function approximation can be viewed
as a search through a space of
hypotheses (representations of
functions) for one that best fits a set of
training data.

n(x,w)

o Different learning methods assume
different hypothesis spaces
(representation languages) and/or
employ different search techniques.

Most of ML is concerned with how to find the
weights such that your NN produces
accurate opinions

N. De Filippis 21



The neural network zoo
N

: Input Cell
© Backfed Input Cell
.5 Noisy Input Cell
@ Hicdencell
© Probablistic Hidden cell
. Spiking Hidden Cell
. Capsule Cell
@ outputcell
@ Matchinput Output Cell
. Recurrent Cell
@ vemorycel
@ ceotedMemary Cell
D) Kerel

© Cconvolution or Pool

Markov Chain (MC)

Deep Convolutional Network (DCN)

NNV

I

Generative Adversarial Network (GAN)

L

L\

Deep Residual Network (DRN)

Capsule Network (CN)

>
%
2

‘X'X'X'X“
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Hopfield Network (HN) ~ Boltzmann Machine (BM)  Restricted BM (RBM)

S T )
AWl i,

> - AR
e

A mostly complete chart of

Neural Networks o

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

Se Toe o

Recurrent Neural Network (RNN)
o

Long / Shert Term Memory (LSTM)  Gated Recurrent Unit (GRU)
oo oo

T
e

y .9
S

b
NP LA
T IR

Auto Encoder (AE)

Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Deep Belief Network (DBN)

--»af&naf\»a
@ Oy
' N N\

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

5~ o~ "
o 2S X0 g o
e < = S P~
W P, Ry e
\.O/Q\. >S /Q\O O/O\
o7 ¢ 0 o

Extreme Learning Machine (ELM)  Echo State Network (ESN)

Differentiable Neural Computer (DNC)
o oo oo

Neural Turing Machine (NTM)

%

Attention Network (AN)

TS Kahonen Netwark (KN}

Ve QWA

Neural network architectures popping up every
now and then, it's hard to keep track of them all

This is cheat sheet containing many of the
NN architectures.

https://www.asimovinstitute.org/neural-network-zoo/
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Machine Learning for HEP

Future Circolar Collider {FCC)

Machine learning use cases at HEP colliders
— Fast simulation
— Tracking with unsupervised learning
— Jet classification
— Particle ID
— Event-based classification
— Physics analysis

N. De Filippis 23




Intro: Classification at Colliders

B
1/ = o
e /T
nearby VS. Jw nearby
tracks tracks
prompt electron jet — electron fake
(signal) (background)

How do we identify electrons at LHC?
N. De Filppis 24 B



Classification techniques at Colliders

single particle showers in a
high-granularity 3D calorimeter

1. Cut-based selection

— Apply requirements on
human-designed features

machine learning NSy T
2' MUIti-variate Algorithms (MVA) electromagnet:c shower hadroni(; shower

— Combine features using neural networks,
boosted decision trees, likelihoods, etc. e vs. n* ROC curve [1]
— Exploit correlations between features § - "\,
® 09 7/ improved
o | /' performance
B 03
3. Deep Learning € o
— Feed Iqw-level data (e.g. calorimeter A —— DNN (cells)
cells) directly to deep neural networks o - —— DNN (features)
— BDT

- Poten!ial tc? exploit information not 05—,
contained in features n* background efficiency

[1] BH, Farbin, Khattak, Pacela, Pierini, Vlimant, Spiropulu, Wei, Proceedings of the Deep Learning
for Physical Sciences Workshop at Neural Information and Processing Systems (NIPS17)

N. De Filippis 25 _




Example: in-painting with Deep Learning

corrupted image “in-painted” image

] Bactl ity i deep o T s S e T
’ -ul.’-::'bﬁlg'h"?'.‘ :.. i |h ! - ' 8 ‘ '-:".?TJH‘.A'“.' . -,
- learning (LR IRRg ST SRR
1 "‘ P ;’ - Emm ““ \1
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1. Generation
of truth information

2. Simulation
of detector response

generative models
(e.g. calorimeter showers)

N. De Filippis

Use Cases at Colliders

MC data physics!

o> <

Analysis

>

Parton

&Y (Lore )

MCParticle

Simulation
(MokkaPlus)

Simulated
detector hits

NS

Detector hits

Physics
objects

Reconstructed
particle

Tracks

unsupervised classification
(e.g. tracking, clustering,
track-cluster matching)

High level
reconstruction
PFA(Arbor)

!

4. Analysis
of physics objects

event classification
(e.g. ttH vs. tt+bb)

event regression
(e-g- IVIHiggs)

3. Reconstruction
of physics objects

object classification
(e.g. particle ID, b-tagging)

object regression
(e.g.E, 6, d)
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Neural Network Architectures

* Fully-Connected Networks (FCN)

— Multiple layers of fully inter-connected
neurons with variable weights

— Structure-agnostic — widely applicable

inputs can be... P -
— , \7 < / /“\-”/‘/ | <> \
features =~ S0 QY QT O\
r— W _- / DU\ & X\\ - L(e)
—@ L(n)
low-level data ~— -/ < AR O % L(y)
(calo cells, track / cluster / -y °° e Y
particle flow p4’s, etc.) — U
L J
|
input hidden output
layer layers layer

N. D Filppis 28 B



Neural Network Architectures

Fully-Connected Networks (FCN) o

. Mu”:]p]e |ayer8 Of fu“y inter-connected Convolutions‘ Feature Layers
neurons with variable weights s 31 1

— Structure-agnostic — widely applicable

Convolutional Neural Networks (CNN)

— Specialized layers (“convolutional filters”) Max-Pooling
identify structures at different scales W~ WZ event
— Computer vision / imaging applications Repeat
— Assumes fixed-length input data - :
Sl QCD jet

INPUT CONV POOL CONV POOL FC OUTPUT

o
exp Olt§ -
extensive Bird: 8
computer g § Boat Ll
vision R&D ) oos: NED
Bird: EaRe [1] de Oliveira, Kagan, Mackey, Nachmann, Schwartzman,
Boat: ki3 “Jet Images — Deep Learning Edition”, JHEPQO7 (2016) 069
De Filppis 29 B




Neural Network Architectures

.
- Fully-Connected Networks (FCN) ® CFTD ? ®
— Multiple layers of fully inter-connected A _ A A Al S
neurons with variable weights ? | ‘ ! (I; ! é i
— Structure-agnostic — widely applicable 8 - @

« Convolutional Neural Networks (CNN)

— Specialized layers (“convolutional filters”)
identify structures at different scales

— Computer vision / imaging applications

— Assumes fixed-length input data :
jet «— sentence

constituents «—— words
type, pt, N, & «— letters

« Recurrent Neural Networks (RNN)
— Cyclical structures allow for
variable-length input data

» e.g. Particle Flow Candidate p4’s

— Language processing applications I

“‘pm_pt3.5_etal.1_phi0.2 pp_pt5.6_eta0.3_phi1.8 g_pt10.5_etai.4_phi0.3 pp_pt3.5_etal.1_phii1.2.”

eXpIOitS eXtenSive Iang Uage prOCGSSing and Louppe, Cho, Becot, Cranmer, QCD-Aware RNNs for Jet Physics, 1702.00748
H Cheng, RNNs for Quark/Gluon Tagging, CSBS (2018) 2:3
translation R&D (e.g. google translate) ATLAS, b-tagging with RNNS, ATL-Pva

N. De Filippis 30



— Structure-agnostic — widely applicable

« Convolutional Neural Networks (CNN)

Neural Network Architectures

.
« Fully-Connected Networks (FCN)

Multiple layers of fully inter-connected

neurons with variable weights

— Specialized layers (“convolutional filters”)

identify structures at different scales

— Computer vision / imaging applications

Assumes fixed-length input data

- Recurrent Neural Networks (RNN)

Cyclical structures allow for
variable-length input data

» e.g. Particle Flow Candidate p4’s
Language processing applications

« Generative Adversarial Networks (GAN)

— Generate ensembles of pseudo-data

N. De Filippis

Fast simulation applications

3

T

INPUTS /
f M '.i-—-roscale
Scal—‘

imultiplicati

=
l

generated output images
(for 3 ATLAS ECAL layers)

Paganini, de Oliveira, Nachman, CaloGAN for
3D particle showers, PRD 97, 014021 (2018)




MC Use Cases at Colliders

* Fully-Connected Networks (FCN)

— Multiple layers of fully inter-connected
neurons with variable weights

— Structure-agnostic — widely applicable - :
g Y EER classification

« Convolutional Neural Networks (CNN) * objects: jet classification, particle ID, etc.

— Specialized layers (“convolutional filters”) | * events: ttH(bb) vs. tt + bb, SUSY vs. ti , etc.
identify structures at different scales * “supervised” (labeled data) or “unsupervised

— Computer vision / imaging applications
— Assumes fixed-length input data

—

measurements with regression
* objects: jet and lepton energies and angles

« Recurrent Neural Networks (RNN) - events: total / hadronic / missing energy, my

— Cyclical structures allow for
variable-length input data
» e.g. Particle Flow Candidate p4’s

— Language processing applications

—

- Generative Adversarial Networks (GAN)
— Generate ensembles of pseudo-data
— Fast simulation applications

N. De Fiippis 32 B

| fast simulation
e.g. particle showers in calorimeters




Tracking with ML

going from hits... to tracks... is computationally expensive:
) 100 e e =
o - econstruction o ata, (s = e’ E 3
:E\ GOE- i Aihems n:l:asefz?gz;“:uc:l;d for: ‘M:Z;OV = 8
oy F  onintel’ Xeon" CPU E5-2630 v3 g B ~
5 80— low-1 reference runs 10862 luminosity blocks = o 8
> E [ high- run 335302 463 luminosity blocks - 3 102 ©
.g 70;‘ ComputingandSoftwarePublicResults .:- = %‘
3 60F ¥ E e
= = = =
> SOE E 5
40F & i 10
30F- 3 E
202_ ol g _z
10 " ATLAS Preliminary - :
Bl i el i Lo i Ve epils o eles s lenei Ve il eas o
qO 20 30 4 50 60 70 80 90 100

()

« Major challenge for HL-LHC
and future hadron colliders!

« (Can leverage unsupervised
learning techniques to group
hits into tracks

» Subject of TrackML challenge

N. De Filippis



Jet classification with ML

++ = mass from QCD radiation

~ 70%

t J‘i 173 GeV++ top tagger performance:

2_‘ P —— ParticleNet
4 & - TreeNiN
4 .“. 10¢ QV —.~ ResNext deep
: _: ...... PFN 1
H - { i 125Gev e learning
~ 60% b === NSub(8)
= LBN
e NSub(6)
s < P-CNN
. o
W/Z N< : 80/91 GeV g 10°] LoLa
~ 70% p @ ==p_E
- o nsub+m
£ —— EFP
= === TopoDNN
b 4.2 GeV++ £, §
o 10
23]
T, - \
C 1.3 GeV++ t q/g N
D . vs. \
101 W
u,d,s % 100 MeV++
00 01 02 03 04 05 06 07 08 09 10

Signal efficiency &5

/ ‘
g \— 04+

(1] from slides by Jessie Thaler » Deep learning approach often provides best

see also recent reviews: performance for jet classification tasks

Larkoski, Moult, Nachman, 1709.04464,
Marzani, Soyez, Spannowsky, 1901.10342
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Strategy for ML event classification

object classification
& regression event categorization

NN = (€, Ete, O, (Pe)\

NN —- ( jet, ET,js 9], (pl )

W, L GATLAS
i (45-GeV) emel cell 1

cell 2

-

1i4d

cell N

cell 1
> —> Prob(SUSY)

—» Prob(SM)

NN

AR R

cell N

cell 1
cell 2

NN = (MET, Ey, 0, ¢)

Yidd

cell N

« Factorize the problem: object tagging + event classification
— Use cells to classify type and measure p4'’s of physics objects (e, u, t, y, j, MET)
— Use object types and p4’s to categorize events (e.g. SM vs. SUSY) with e.g. RNNs
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Big data for HEP
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History of computing - www

How the Web began

CERN DD/OC Tim Berners-Lee, CERN/DD
Information Management: A Proposal March 1989

Information Management: A Proposal

Abstract

This proposal concerns the ofgcmnl" ion about and at
CERN. It discusses the problems of loss of information about complex evolving systems and derives a
solution based on a distributed hypertext sytstem.
Keywords: 11 Computer ing, [ retricval, i Project
control
8M
Compuf lur ------ | GroupTalk
/\ conferenci nq
View on CDS ¢
N

i Sl el Hierarchical

A

systems

‘‘‘‘‘ E »Jfor exemple
= —\)

Ior ample

'
'
'
H
|
; unifi
A £ :
Linked Y " P\ P ® :
information r ) H
. i
- . H
S ;
.
c, s describes ingludes ) Y

ﬁx ex emnle

. CERN
descr ibes 2 l—l*
Hypertext” . 00 division

rrrrr
MIS ooq oup
cl e des: ribes
wrola

RA se:non
Hyper media nm I T
Berners-Lee
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Tim Berners-Lee wrote the first proposal for the World Wide
Web in March 1989 and his second proposal in May 1990.
Together with Belgian systems engineer Robert Cailliau, this was
formalised as a management proposal in November 1990.

The document described a "hypertext project” called
"WorldWideWeb" in which a "web" of "hypertext documents"

could be viewed by “browsers”.

By the end of 1990, Tim Berners-Lee had the first Web server and
browser up and running at CERN, demonstrating his ideas.

The birth-ofithe Web

He developed the code for
his Web server on a NeXT
computer. To prevent it
being accidentally
switched off, the computer
had a hand-written label in
red ink: "This machineis a
server. DO NOT POWER IT
DOWN!!"


http://cds.cern.ch/record/369245/files/dd-89-001.pdf
http://cds.cern.ch/record/2639699/files/Proposal_Nov-1990.pdf

Experimental Particle Physics - the

Journey
Particle Collisions Higgs Boson Discover

CMS Preliminary
1

W
[=]
O -

? { Data " Dec05,2012 '4 -
ousf | BmcEey  RIHNEINAN ]
@ | Bz ]
o 20F =
—> ‘. H ;
151 E
1 T
Large Scale  [i H | E
Computing OMI R L] ]
80 100 200 300 400 600 800
m,, [GeV]
Device Algorithm 2L
RAW. IEESTSEN RECO, RTINS O
Data N Data software —_—
Simulatio ct data al
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Recorded and simulated Events centrally > M|n|m|ze T| me to |n S|g ht
produced Aaels Objec Dala MINIA%PII = Anallysis is a conversation with data - Interactivity is

Ntupling

@ ~4 x year key
- » Many different physics topics concurrently under
roup ntuples . . .
Investigation
= Different slices of data are relevant for each analysis

~1 x week

Skimming
&
Slimming

» Programmatically same analysis steps

Group analysis ntuples

o | - o = = S k|m m |ng (dropping events in a disk-to-disk copy)

7 ®© 7 : :

%- O %- 53% %\ = Sllm M |ng (dropping branches in a disk-to-disk copy)
(W] » 3O - .

< a E 8 = Fl|tel’ln selectively reading events into memory

z £

h— Q -

§ = :§ machine learning = Pru nin g (selectively reading branches into memory)

Q © = technique

Q o S

z 5 = g3

- %] = [

=] : ; 3 3 ED

(&) = » =

plots and tables
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»New toolkits and systems collectively called “Big Data” technologies have
emerged to support the analysis of PB and EB datasets in industry.

»"Big data is a collection of data sets so large and complex that it becomes difficult
to process using on-hand database management tools or traditional data
processing applications”

Our goals in applying
- g (MM General management tools for data pipelines
these technologies to the  INSIGHT . ][M;-;A ][ﬁm ][m ] s (op—
HEP: —

4. FinkML 4. Hama 4. Impala

<eeper

(Fie System Y Batch Processing = .
1. HDFS 1. Spark
2.AWSS3 | 2. Hadoop MapReduce M »
° Reduce Time to Insi g ht Ingestion ) File Format N 'f‘l“"‘e i- gwf EMR Anaw,;ms Web Framework | Data Visualization
1. Kafka 1. Avro DL bl Upti 4 1. Ruby on Rails 1.08
5 5. Ceph 5. Tez ptime Critical
° Ed u Cate our rad Uate 2, Logstz:xsh 2. ProtoBuf A7 AL A search 2. Node js 2. Tableau
0 e e T |
StUdentS and pOSt dOCS to 5. AWS Kinesis | 5. ORC Files i 5 Flask 5. Kibana
y 1. Storm Time Series
use industry-based plo o
; 4.5 Tansactons |((Anaiis | Uptime Crical | Search
technologies [ shm e (| e [ comrn | e
2. Oracle 2 Verica 2. Riak 2. Soir
 Improves chances on the == JC =N ==
job market outside academia =T e fEp -
2. PostGIS 2. Cassandra
° Increases the 3ArangoDB 3. Elasticsearch ]| 3. Druid :mazeasx

attractiveness of our field
« Be part of an even larger

" meunlty




Recorded and simulated Events centrally
produced Analysis Object Data (MINIAOD)

-4
@ *YEA - oms Data

Ntupling

CERN openlab / Intel project /Recas (Bari)

Apache Spark is a unified analytics engine for large-
scale data processing with built-in modules for

| Group ntuples || Reduction  SQL, streaming, machine learning, and
2 2 1 ) Facility graph processing.
3 ~1 x wee
§ £ Spark can run on Apache Hadoop, Apache Mesos,
Group analysis niuples | Kubernetes, on its own, in the cloud and for diverse
2 [l z = 5, data sources.
= o = 543
T BV ) -~
E E % machine learning l'ﬁi Jupyter@@
[*] ® E technigue IIII - @
g % :Z 5 e accessed by
E \/ v E J} %E% =, = = UN ¢ run
lots and tables E E E > ““”“Az 9 Guog?cloud
i e ark =
e | R p " kubernet ope;‘l-.s.tack
= Goal: Demonstrate reduction capabilities data from
producing analysis ntuples using Apache %,
Spark EOS
Storage
Service

= Demonstrator’s goal: data reduction of 1

PB input data in 5 hours

N. De Filippis

Analytics Platform at CERN




«  R&D to improve the quality of filtering systems
. Develop a “Deep Learning classifier” to be used by the filtering system
- Goal: Reduce false positives = do not store nor process uninteresting events

«  “Topology classification with deep learning to improve real-time event selection
at the LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12

(CMS Experiment at LHC, CERN

C Data recorded: Wed Jul 8 19:26:24 2015 CEST
Run/Event: 251244 / 83494441

Lumi section: 151

Orbit/Crossing: 39572626 / 358

MET= 164.0 GeV
i Particle
e, Jet ip-
S )2 Pr=01608 — Classifier

Jet p, =56.8 GeV

Muon p, = 53.8 GeV

N. De Filippis
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Machine o
Resource Monitoring
) Management
Configuration Data Collection Serving
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Figure 1: Only a small fraction of real-world ML systems 1s composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.
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> Once the network topology is chosen, hyper-parameter tuning
is done with scikit-learn + Keras and parallelized with Spark

> the Area Under the ROC curve (AUC), as the performance
metric to compare different classifiers

> the feed-forward DNN tuning done by changing the number of
layers and units per layer, the activation function, the
optimizer, etc.
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State of the Art Applications of Machine
Learning for daily life
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Autonomous cars

 Nevada made it legal for
autonomous cars to drive on
roads in June 2011

e As of 2013, four states (Nevada,
Florida, California, and Michigan)
have legalized autonomous cars
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Autonomous car technology
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Deep Belief Net on Face Images

Input Label .‘-". ,\'E ese &

object models
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o
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Based on materials
by Andrew Ng
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Scene Labeling via Deep Learning

[Farabet et al. ICML 2012, PAMI 2013]
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Inference from Deep Learned models

B
Generating posterior samples from faces by “filling in” experiments
(cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.

Input images

Samples from

feedforward T
Inference i_
(control)

Samples from
Full posterior
inference
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Machine Learning in Automatic Speech Recognition
.

A Typical Speech Recognition System

Transducer
Neural &

Language
Model

,NoA aie moy ‘IH

Deep learning has state-of-the-art results

T N N I I

Word Error Rate % 160 128 114 109 110 111

Baseline GMM performance = 15.4%

, : [Zeiler et al. “On rectified linear units for
[ Lol on [an] o [w Bz [ Jl on Lo speech recognition” ICASSP 2013]

400071 | “‘ “ I“ “l“ _




Impact of Deep Learning in Speech Technology

o %
o~
H, .
o

P e 4
R/

Google now

XBOX! BRING
ME A PIE!




Conclusions

« Machine learning are part of our daily life and evolve rapidly for
mutiple purposes and different complex problems.

« Wide variety of machine learning techniques available for collider
classification, regression, and fast simulation tasks

« Feature-based classifiers widely used in HEP experiments and under
study for future colliders

« Deep learning approach with low-level inputs has been shown to
provide better performance for some problems

« Many different applications available on the market

Enjoy the benefit of ML in your daily life
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Backup
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Unsupervised Learning

Genomics application: group individuals by genetic

similari

Individuals
51




Autonomous car sensors

360° 3-d LADAR
Obstacle GPS/INU

Detection
LADARS \

Sterec
Cameras
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History of machine learning (1)

e 1950s

— Samuel’s checker player

— Selfridge’s Pandemonium
e 1960s:

— Neural networks: Perceptron

— Pattern recognition

— Learning in the limit theory

— Minsky and Papert prove limitations of Perceptron
e 1970s:

— Symbolic concept induction

— Winston’s arch learner

— Expert systems and the knowledge acquisition

bottleneck

— Quinlan’s ID3

— Michalski’s AQ and soybean diagnosis

— Scientific discovery with BACON

— Mathematical discovery with AM
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History of machine learning (2)

e 1980s:

— Advanced decision tree and rule learning

— Explanation-based Learning (EBL)

— Learning and planning and problem solving

— Utility problem

— Analogy

— Cognitive architectures

— Resurgence of neural networks (connectionism,
backpropagation)

— Valiant's PAC Learning Theory
Focus on experimental methodology

J 19905
Data mining
— Adaptive software agents and web applications
— Text learning
— Reinforcement learning (RL)
— Inductive Logic Programming (ILP)
— Ensembles: Bagging, Boosting, and Stacking
— Bayes Net learning
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History of machine learning (3)

—
e 2000s

— Support vector machines & kernel methods
Graphical models

Statistical relational learning

Transfer learning

Sequence labeling

Collective classification and structured outputs

Computer Systems Applications (Compilers, Debugging, Graphics, Security)

E-mail management
Personalized assistants that learn
— Learning in robotics and vision

e 2010s

N. De Filippis

Deep learning systems
Learning for big data
Bayesian methods
Multi-task & lifelong learning

Applications to vision, speech, social networks, learning to read, etc.

277
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EVALUATION
'/, METRICS

» The idea of building machine learning models
works on a constructive feedback principle:

= building a model, getting a feedback from metrics,
making improvements and continuing until you
achieve the desired accuracy
> An important aspect of evaluation metrics is
their capability to discriminate among model
results

» The real goal is creating and selecting a model
which gives high accuracy on sample data:

= |tis crucial to check the accuracy of your model prior
to computing predicted values.
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Accuracy
Precision and
recall
Squared error
_ikelihood
Posterior
orobability
Cost/ Utility
Margin
Entropy
K-Ldivergence
etc.

Evaluation
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Landscape of the Higgs physics

So far many questions still open for Higgs physics:

v" How well the Higgs boson couplings to fermions, gauge bosons and to itself be probed at

current, HL-LHC and future colliders?
How do precision electroweak observables provide us information about the H properties
and/or BSM physics?

What progress is needed in theoretical developments in QCD and EWK to fully capitalize on
the experimental data?

What is the best path towards measuring the Higgs potential ?

To what extent can we tell whether the Higgs is fundamental or composite?

v

cMs 138 fb! (13 TeV)
® Observed | +1s.d. (stat)
— +1 5.d. (stat @ syst) [ +1s.d. (syst)
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L ; 0
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—-— osgy e 3
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—————— 1125921 018 1000
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KZY
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FCC long-term program

B
2020 ES for HEP:

“An electron-positron Higgs factory is the highest priority next collider. For the longer term,
the European particle physics community has the ambition to operate a proton-proton collider at
the highest achievable energy.”

“Europe, together with its international partners, should investigate the technical and financial
feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and
with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility
study of the colliders and related infrastructure should be established as a global endeavour and
be completed on the timescale of the next Strategy update.”

FCC@CERN: comprehensive program maximizing physics opportunities
« stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at

highest luminosities

« stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA
collisions; e-h option

« highly synergetic and complementary programme boosting the physics reach of both

colliders
« FCC integrated project allows the start of a new, major facility at CERN within a few

years of the end of HL-LHC



FCC long-term program
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Machine luminosity for physics at ete" colliders

.
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Higgs production at FCC-ee

B
Higgs-strahlung or e*te=> ZH

Higgs production @ FCC-ee
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