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Machine learning: definition

“Machine Learning: Field of study that gives 

computers the ability to learn without being 

explicitly programmed.” -Arthur Samuel (1959)
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“Learning is any process by which a system improves 
performance from experience.”

- Herbert Simon
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When Do We Use Machine Learning?

ML is used when:

• Human expertise does not exist (navigating on Mars)

• Humans can’t explain their expertise (speech recognition)

• Models must be customized (personalized medicine)

• Models are based on huge amounts of data (genomics)

• Fundamental science → HEP

Learning isn’t always useful:

• There is no need to “learn” to calculate payroll
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More examples of tasks that are best solved by using ML

• Recognizing patterns:
– Facial identities or facial expressions

– Handwritten or spoken words

– Medical images

• Generating patterns:
– Generating images or motion sequences

• Recognizing anomalies:
– Unusual credit card transactions

– Unusual patterns of sensor readings in a nuclear power 
plant

• Prediction:
– Future stock prices or currency exchange rates
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• Web search
• Computational biology
• Finance

• E-commerce
• Space exploration
• Robotics
• Information extraction
• Social networks

• Debugging software
• Fundamental Science → HEP

6

ML applications
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• Supervised (inductive) learning

– Given: training data + desired outputs 

(labels)

• Unsupervised learning

– Given: training data (without desired 
outputs)

• Semi-supervised learning

– Given: training data + a few desired 

outputs

• Reinforcement learning

– Rewards from sequence of actions
7

Type of Learning
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Supervised Learning
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Supervised Learning: Regression
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Supervised Learning: Regression

• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

– y is real-valued == regression
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Supervised Learning: Classification
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• Given (x1, y1), (x2, y2), ..., (xn, yn)

• Learn a function f(x) to predict y given x

– y is categorical == classification

Breast Cancer (Malignant / Benign)

1(Malignant)

0(Benign)

Tumor Size

Predict Benign Predict Malignant

Tumor SizeBasedon example by Andrew Ng

Supervised Learning: Classification
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Unsupervised Learning
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• Given x1, x2, ..., xn (without labels)

• Output hidden structure behind the x’s

– E.g., clustering

Unsupervised Learning
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Organize computing clusters Social network analysis

Image credit: NASA/JPL-Caltech/E. Churchwell (Univ. of Wisconsin,

Madison)

Astronomical data analysisMarket segmentation

Unsupervised Learning
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• Independent component analysis – separate 

a combined signal into its original sources

Image credit: statsoft.com Audio from 
http://www.ism.ac.jp/~shiro/research/blindsep.html

Unsupervised Learning
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Reinforcement Learning
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• Given a sequence of states and actions with 

(delayed) rewards, output a policy

– Policy is a mapping from states → actions that 

tells you what to do in a given state

• Examples:

– Credit assignment problem

– Game playing

– Robot in a maze

– Balance a pole on your hand

Reinforcement Learning
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Learning algorithm and Artificial neuron or Perceptron

O For our purpose we define a learning algorithm (LA) as a composite entity including:

O a data set, for which we search for patterns

O a model (for our discussion here, this will be represented by weights)

O an optimisation algorithm (a recipe to adjust/change weights)

O a loss function

O LA is able to learn based on the data that is „given” to it

O To be able to describe the learning process in quantitative way we define, on top of the previous

notions, Experience, Class of Tasks and Performance Metric
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The algorithm

20



N. De Filippis                             

Feed-forward neural networks

Most of ML is concerned with how to find the 

weights such that your NN produces
accurate opinions

• Learning can be viewed as using direct
or indirect experience to approximate
a chosen target function.

• Function approximation can be viewed
as a search through a space of 
hypotheses (representations of 
functions) for one that best fits a set of 

training data.

• Different learning methods assume 
different hypothesis spaces
(representation languages) and/or 
employ different search techniques.
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The neural network zoo

https://www.asimovinstitute.org/neural-network-zoo/

Neural network architectures popping up every

now and then, it’s hard to keep track of them all

This is cheat sheet containing many of the 

NN architectures. 
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Machine Learning for HEP

23

Machine learning use cases at HEP colliders

– Fast simulation

– Tracking with unsupervised learning

– Jet classification

– Particle ID

– Event-based classification

– Physics analysis
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Intro: Classification at Colliders
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Classification techniques at Colliders
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Example: in-painting with Deep Learning 
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Use Cases at Colliders
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Neural Network Architectures

28



N. De Filippis                             

Neural Network Architectures
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Neural Network Architectures
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Neural Network Architectures
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MC Use Cases at Colliders
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Tracking with ML
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Jet classification with ML
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Strategy for ML event classification

35



N. De Filippis                             

Big data for HEP
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History of computing - www
Tim Berners-Lee wrote the first proposal for the World Wide 
Web in March 1989 and his second proposal in May 1990. 
Together with Belgian systems engineer Robert Cailliau, this was
formalised as a management proposal in November 1990. 

The document described a "hypertext project" called
"WorldWideWeb" in which a "web" of "hypertext documents" 
could be viewed by “browsers”.

By the end of 1990, Tim Berners-Lee had the first Web server and 
browser up and running at CERN, demonstrating his ideas. 

He developed the code for 
his Web server on a NeXT
computer. To prevent it
being accidentally
switched off, the computer 
had a hand-written label in 
red ink: "This machine is a 
server. DO NOT POWER IT 
DOWN!!"

http://cds.cern.ch/record/369245/files/dd-89-001.pdf
http://cds.cern.ch/record/2639699/files/Proposal_Nov-1990.pdf


N. De Filippis                             
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➢Minimize Time to Insight
▪ Analysis is a conversation with data - Interactivity is 

key

➢Many different physics topics concurrently under 
investigation
▪ Different slices of data are relevant for each analysis

➢Programmatically same analysis steps
▪ Skimming (dropping events in a disk-to-disk copy)

▪ Slimming (dropping branches in a disk-to-disk copy)

▪ Filtering (selectively reading events into memory)

▪ Pruning (selectively reading branches into memory)

Data Analysis: a multi-step process
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➢New toolkits and systems collectively called “Big Data” technologies have 
emerged to support the analysis of PB and EB datasets in industry.

➢ ‘’Big data is a collection of data sets so large and complex that it becomes difficult
to process using on-hand database management tools or traditional data 
processing applications’’

Big Data for HEP

Our goals in applying
these technologies to the 

HEP:

• Reduce Time to Insight

• Educate our graduate 

students and post docs to 

use industry-based

technologies

• Improves chances on the 

job market outside academia

• Increases the 

attractiveness of our field

• Be part of an even larger

community
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▪ CERN openlab / Intel project /Recas (Bari) 

▪ Apache Spark is a unified analytics engine for large-

scale data processing with built-in modules for 

• SQL, streaming, machine learning, and

graph processing.

➢ Spark can run on Apache Hadoop, Apache Mesos,

Kubernetes, on its own, in the cloud and for diverse

data sources.

Data Reduction and Analysis Facility

EOS 

Storage 

Service

run
s on

access 
data from

access 
data 
from

accessed by

run
s on

▪ Goal: Demonstrate reduction capabilities 

producing analysis ntuples using Apache 

Spark

▪ Demonstrator’s goal: data reduction of 1 

PB input data in 5 hours Analytics Platform at CERN
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1
63%

2
36%

3
1%

Particle 
Classifier

W + j

QCD

t-t̅

• R&D to improve the quality of filtering systems

• Develop a “Deep Learning classifier” to be used by the filtering system

• Goal: Reduce false positives → do not store nor process uninteresting events

• “Topology classification with deep learning to improve real-time event selection 
at the LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12

N. De Filippis                             42

Deep Learning Pipeline for Physics Data
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• From “Hidden Technical Debt in Machine Learning Systems”, 
D. Sculley at al. (Google), paper at NIPS 2015

N. De Filippis                             43

Engineering effort to enable Effective ML
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Data 
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1. Specify 
model 

topology
2. Tune model 

topology on 

small dataset

Train the 
best model 

Built with Apache Spark + Analytics Zoo + Python Notebooks

N. De Filippis                             44

Deep Learning Pipeline for Physics Data
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➢ Once the network topology is chosen, hyper-parameter tuning 
is done with scikit-learn + Keras and parallelized with Spark

➢ the Area Under the ROC curve (AUC), as the performance 
metric to compare different classifiers

➢ the feed-forward DNN tuning done by changing the number of 
layers and units per layer, the activation function, the 
optimizer, etc. 

N. De Filippis                             45

Hyper-Parameter Tuning
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Machine Learning with Spark and Keras
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11

State of the Art Applications of Machine 
Learning for daily life
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• Nevada made it legal for 
autonomous cars to drive on 

roads in June 2011

• As of 2013, four states (Nevada, 

Florida, California, and Michigan) 
have legalized autonomous cars

Autonomous cars

48
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LaserTerrain Mapping

Stanle

y

Learning from HumanDrivers

Sebastian

Adaptive
Vision

Path 
Planning

Images and movies taken from Sebastian Thrun’s multimedia w1e4bsite.

Autonomous car technology
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pixels

edges

object parts 

(combination 

of edges)

object models

Basedon materials 
by Andrew Ng

Deep Belief Net on Face Images

50



N. De Filippis                             

[Farabet et al. ICML 2012, PAMI 2013]

Scene Labeling via Deep Learning
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Input images

Samples from 
feedforward 

Inference 

(control)

Samples from 
Full posterior 

inference

Generating posterior samples from faces by “filling in” experiments
(cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.

Inference from Deep Learned models
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A Typical Speech Recognition System

ML used to predict of phone states from the sound spectrogram

Deep learning has state-of-the-art results

# HiddenLayers 1 2 4 8 10 12

Word Error Rate % 16.0 12.8 11.4 10.9 11.0 11.1

Baseline GMM performance = 15.4%

[Zeiler et al. “On rectified linear units for 
speech recognition” ICASSP 2013]

Machine Learning in Automatic Speech Recognition
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Impact of Deep Learning in Speech Technology
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Conclusions

• Machine learning are part of our daily life and evolve rapidly for
mutiple purposes and different complex problems.

• Wide variety of machine learning techniques available for collider
classification, regression, and fast simulation tasks

• Feature-based classifiers widely used in HEP experiments and under
study for future colliders

• Deep learning approach with low-level inputs has been shown to
provide better performance for some problems

• Many different applications available on the market

Enjoy the benefit of ML in your daily life
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Backup
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G
e
n
e
s

Individuals

Genomics application: group individuals by genetic 

similarity

Unsupervised Learning
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Autonomous car sensors
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• 1950s
– Samuel’s checker player
– Selfridge’s Pandemonium

• 1960s:
– Neural networks: Perceptron
– Pattern recognition
– Learning in the limit theory
– Minsky and Papert prove limitations of Perceptron

• 1970s:
– Symbolic concept induction
– Winston’s arch learner
– Expert systems and the knowledge acquisition 

bottleneck
– Quinlan’s ID3
– Michalski’s AQ and soybean diagnosis
– Scientific discovery with BACON
– Mathematical discovery with AM

History of machine learning (1)
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• 1980s:
– Advanced decision tree and rule learning
– Explanation-based Learning (EBL)
– Learning and planning and problem solving
– Utility problem
– Analogy
– Cognitive architectures
– Resurgence of neural networks (connectionism, 

backpropagation)
– Valiant’s PAC Learning Theory
– Focus on experimental methodology

• 1990s
– Data mining
– Adaptive software agents and web applications
– Text learning
– Reinforcement learning (RL)
– Inductive Logic Programming (ILP)
– Ensembles: Bagging, Boosting, and Stacking
– Bayes Net learning

History of machine learning (2)
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• 2000s
– Support vector machines & kernel methods
– Graphical models
– Statistical relational learning
– Transfer learning
– Sequence labeling
– Collective classification and structured outputs
– Computer Systems Applications (Compilers, Debugging, Graphics, Security)

– E-mail management
– Personalized assistants that learn
– Learning in robotics and vision

• 2010s
– Deep learning systems
– Learning for big data
– Bayesian methods
– Multi-task & lifelong learning
– Applications to vision, speech, social networks, learning to read, etc.
– ???

History of machine learning (3)
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EVALUATION 

METRICS

➢ The idea of building machine learning models 
works on a constructive feedback principle:
▪ building a model, getting a feedback from metrics, 

making improvements and continuing until you 
achieve the desired accuracy

➢ An important aspect of evaluation metrics is 
their capability to discriminate among model 
results

➢ The real goal is creating and selecting a model 
which gives high accuracy on sample data:
▪ It is crucial to check the accuracy of your model prior 

to computing predicted values.
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Evaluation

• Accuracy

• Precision and

recall

• Squared error

• Likelihood

• Posterior

probability

• Cost / Utility

• Margin

• Entropy

• K-Ldivergence

• etc.
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Landscape of the Higgs physics

➢ Beyond HL-LHC:

✓ Couplings to fermions to %-level, to 

bosons to per-mil

✓ self-coupling

✓ Invisible decays, BSM Higgses

So far many questions still open for Higgs physics:
✓ How well the Higgs boson couplings to fermions, gauge bosons and to itself be probed at

current, HL-LHC and future colliders?

✓ How do precision electroweak observables provide us information about the H properties

and/or BSM physics?

✓ What progress is needed in theoretical developments in QCD and EWK to fully capitalize on 

the experimental data?

✓ What is the best path towards measuring the Higgs potential ?

✓ To what extent can we tell whether the Higgs is fundamental or composite? 

64

δκλ ~ 50%

2 - 4 %
Uncertainty

1 0 - 2 0 %
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2020 ES for HEP:
“An electron-positron Higgs factory is the highest priority next collider. For the longer term,

the European particle physics community has the ambition to operate a proton-proton collider at

the highest achievable energy.”

“Europe, together with its international partners, should investigate the technical and financial

feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and

with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility

study of the colliders and related infrastructure should be established as a global endeavour and

be completed on the timescale of the next Strategy update.”

65

FCC long-term program

FCC@CERN: comprehensive program maximizing physics opportunities
• stage 1: FCC-ee (Z, W, H, t ҧt) as Higgs factory, electroweak & top factory at 

highest luminosities

• stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA 

collisions; e-h option

• highly synergetic and complementary programme boosting the physics reach of both 
colliders 

• FCC integrated project allows the start of a new, major facility at CERN within a few 

years of the end of HL-LHC
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FCC long-term program

FCC-ee FCC-hh

2020 - 2045 2045 - 2065 2070 - 

Final closest deliverable is a Feasibility 

Study Report by March 2025.



N. De Filippis                             

Machine luminosity for physics at e+e- colliders

➢ Higgs factory:

▪ 106 e+e- → HZ

➢ EW & Top factory:

▪ 3x1012 e+e- → Z

▪ 108 e+e- → W+W-

▪ 106 e+e- → tt

➢ Flavor factory:

• 5x1012 e+e- → bb, cc 

• 1011 e+e- → 𝛕+𝛕-

~100 kHz of physics data at the Z pole

67

ΔLEP,Stat

≈
500
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Higgs production at FCC-ee

Higgs-strahlung or e+e-
→ ZH

Higgs production @ FCC-ee

Threshold ZH production VBF production

240 GeV / 5 ab-1 1e6 2.5e4

H3ig6g5sGeV / 1.5 ab-1 2e5 5e4

VBF production: e+e-
→vvH (WW fus.), 

e+e-
→He+e- (ZZ fus.)

68
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