MCPLOTS status and plans

A. Karneyeu¹, N. Korneeva², P. Skands²

¹University of Notre Dame ²Monash University

LHC MC WG meeting 14 November 2024

MCPLOTS: overview

Birth of the LHC@home: an outreach event for CERN's 50th anniversary SixTrack simulation of beam dynamics runs on Windows/OSX/Linux

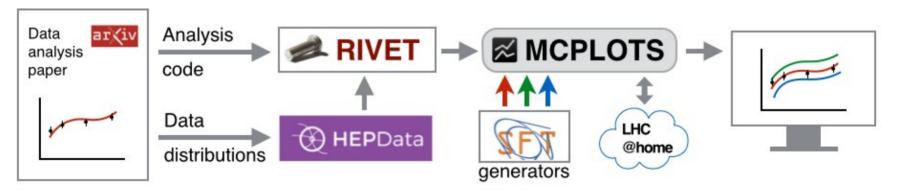
2010

Start of the Test4Theory/MCPLOTS project being the first using virtualization (CernVM).

Basic idea: test virtual LHC@home with real scientific applications (Pythia and eventually other HEP MC generators)

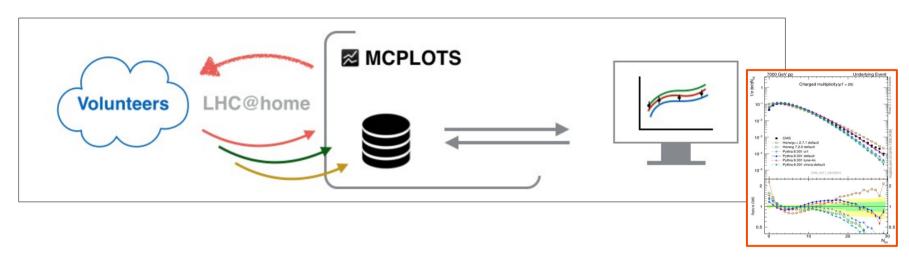
Addition of Rivet brought in the **validation** aspect

2016

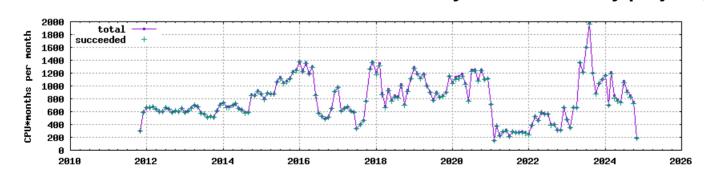


MCPLOTS: overview

https://mcplots.cern.ch/


https://rivet.hepforge.org/

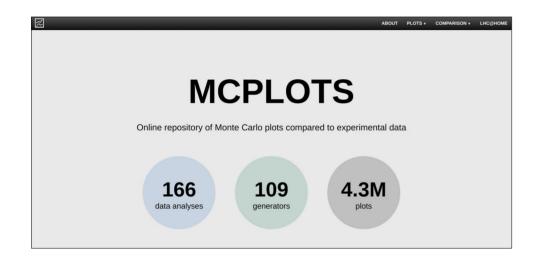
https://www.hepdata.net/

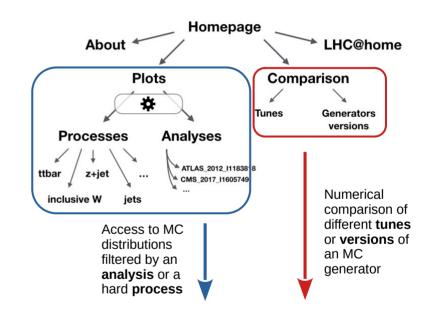

https://ep-dep-sft.web.cern.ch/

https://lhcathome.web.cern.ch/

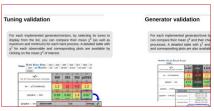
MCPLOTS workflow

CPU resources accessed by the Test4Theory project (monthly averaged)

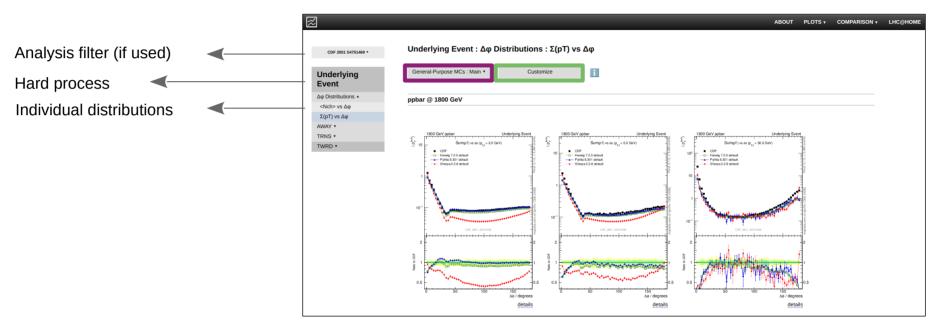

Key numbers:


~800 volunteers


~109 events per day

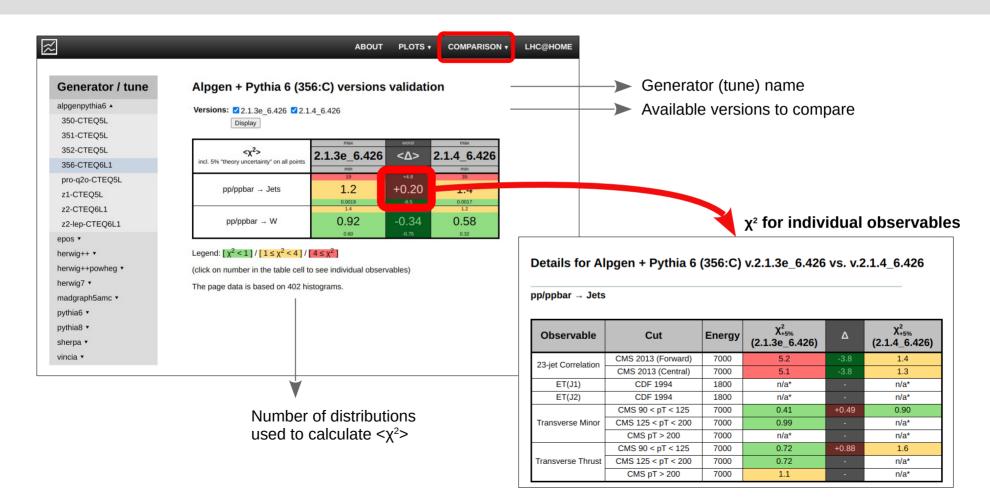

Website

https://mcplots.cern.ch/





Website: plots



Possibility to choose what to plot either from a pre-defined preset or from all MCs

	7.2.0	□default □softTune
madgraph5amc	2.4.3.atlas	□lo □lo1jet □lo2jet
	2.5.5.atlas	□lo □lo1jet □lo2jet
	2.6.0.atlas	□lo □lo1jet □lo2jet □nlo □nlo1jet □nlo2jet
	2.6.1.atlas	□lo □lo1jet □lo2jet □nlo □nlo1jet □nlo2jet
	2.6.2.atlas	□lo □lo1jet □lo2jet □nlo □nlo1jet □nlo2jet
	2.6.5.atlas	□lo □lo1jet □lo2jet □nlo □nlo1jet
	2.6.6.atlas	□lo □lo1jet □lo2jet □nlo □nlo1jet □nlo2jet
	2.6.7.atlas2	□lo □lo1jet □lo2jet □nlo □nlo1jet
	2.7.2.atlas3	□lo □lo1jet □lo2jet □nlo □nlo2jet
pythia6	6.423	□a □d6t □default □dw □dwt □p0 □p2010 □p6 □pr
	6.424	□a □ambt1 □d6t □default □dw □dwt □p0 □p2010 [
	6.425	□350 □351 □352 □353 □354 □355 □356 □357 □3

Website: comparison

Current status

Always shown on the main page:

Implemented generators: Alpgen, Epos, Herwig++ and Herwig7, MadGraph, Powheg-Box, Pythia6 and Pythia8, Sherpa, Vincia

1065 generator-version-tune combinations

166 data analyses with **5016 data distributions** implemented so far refer mostly to the *ee* and *pp* HEP collider experiments: ATLAS, CMS, D0 etc. Recently added: *PbPb*.

The repository is continously filled and the **source code** of the project is available :

https://gitlab.cern.ch/MCPLOTS/mcplots

MCPLOTS paper: Event-Generator Validation with MCPLOTS and LHC@home

https://doi.org/10.1140/epjp/s13360-024-05353-2

MCPLOTS production cycle

Fix mc configurations to be used and start the production

2-3 weeks Initial accumulation of statistics

Update the website with new plots

3 days Calculation of χ^2 values

Accumulation of statistics and development stage

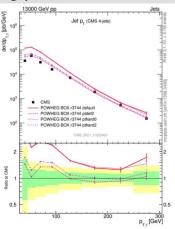
Implementation of new Rivet routines

several months new generators/versions/tunes

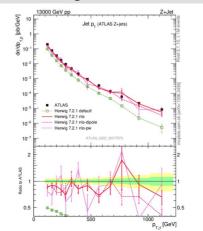
. . .

Switch to the latest Rivet version Fix the updates

Fix mc configurations to be used and start a new production

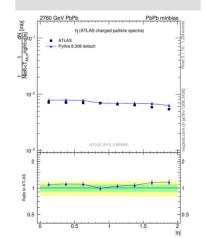

MCPLOTS production cycle

Express production


- main production is on hold
- only relevant tasks are distributed to volunteers
- · first results in 24 hours
- after collecting sufficient statistics, it is switched back to the main production

In the last few months, there have been three of such express productions:

1. Variations of Powheg-Box/Pythia matching parameters


2. Variations of Herwig matching schemes

These express results are on

https://mcplots-dev.cern.ch/

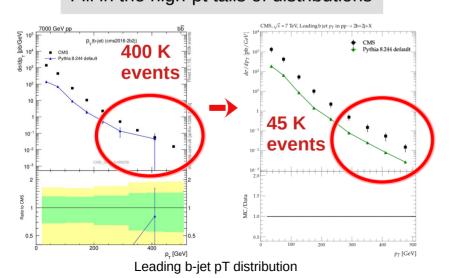
3. Heavy ion runs

Development

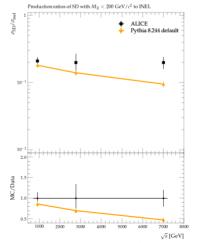
Recent updates

Rivet to 4.0.x

YODA to 2.0.x

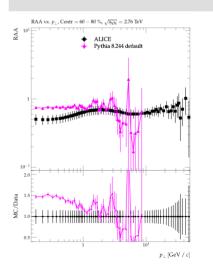


MCPLOTS major update


corresponding change in the data storage format and data merging in MCPLOTS

Profits from this update and using Rivet native histogram merging:

Fill in the high-pt tails of distributions



√s distributions

SD to INEL as a function of ECM

HI RAA distributions

Development

- **Usual development tasks**: implementation of new analyses, new generator versions etc.
- Work on **automation of adding new generators/generator versions** for quicker validation : in collaboration with the SFT team
- Improving the website validation pages
- Increasing statistics:
 update from 05/2024

 Number of plots are increased by more than 4x

New data analyses have been

Plan to **remove** some outdated versions/tunes to increase statistics in distributions of interest

Example:

Pythia 6

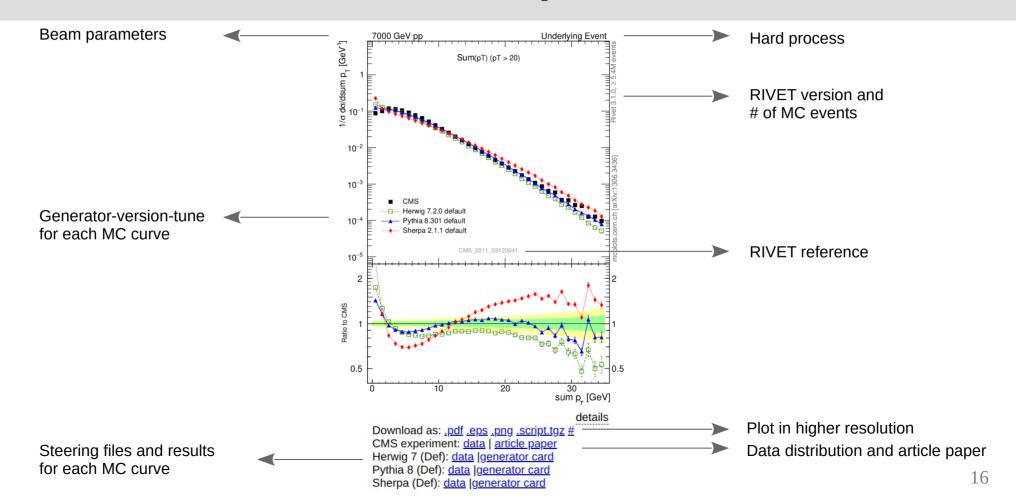
6 versions: 6.428, 6.427, 6.426, 6.425, 6.424, 6.423.

58 tunes: 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356...

implemented

Summary

- MCPLOTS : MC validation resource based on volunteer computing
- ➤ CPU power: LHC@home
- ➤ Website: https://mcplots.cern.ch/
- Continuous development of the project to add more features and improve the accuracy of comparison of MC generators with data
- Fast validation including sample generation production of plots with Rivet χ^2 calculation


BACKUP

Database

Information about the distributions

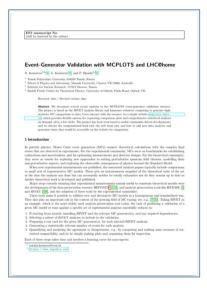
[id]	[fname]	[type]	[prc]	[obs]	[tune]	[exp]	[ref]	[hid]	[beam]	[Ecm]	[cuts]	[gen]	[ver]
90	<pre>dat/CDF_2005 _S6217184-ppbar -1960/jets-js_int -cdf3-037-d07-x01 -y01/pythia8 -8.244-tune-2m.dat</pre>	mc	jets	js_int	tune-2m	CDF	CDF_2005 _S6217184	d07 -x01 -y01	ppbar	1960	cdf3 -037	pythia8	8.244
91	dat/CDF_2005 _S6217184-ppbar -1960/jets-js_int -cdf3-037-d07-x01 -y01/CDF_2005 _S6217184.dat	data	jets	js_int		CDF	CDF_2005 _S6217184	d07 -x01 -y01	ppbar	1960	cdf3 -037		

Website: plots

Paper

The first paper was published ~10 year ago :

MCPLOTS: a particle physics resource based on volunteer computing


https://doi.org/10.1140/epjc/s10052-014-2714-9

The second one: January 2024

Event-Generator Validation with MCPLOTS and LHC@home

https://doi.org/10.1140/epjp/s13360-024-05353-2

- Full description of the updated repository and database structure
- Comprehensive user's guide (the website functionality)
- Developer's guide : how to implement
 - → a new data analysis
 - → a new generator (version)
 - a new generator tune
- Phase-space cuts discussion

