Experiments view on the generators

Dominic Hirschbühl

FSP ATLAS Erforschung von Universum und Materie

LHC Monte Carlo WG: kickoff meeting 14.11.2024 **Needs and expectations**

Technical point of interests

Physics issues

Collaboration

Generator techniques

LHC Monte Carlo WG: kickoff meeting Dominic Hirschbühl | 14.11.2024

2

Technical points of interest

Improvements in calculation efficiency

Improvements in the calculation itself (in random order)

- Profiling of generator code
 - Collaborations have quite some experience here
- Usage of GPUs
 - Experiments all investigating GPU usage, and GPUs are more available
 - Landscape of LHC computing hardware may change
- Optimized parallelization
- Many points have been discussed in the last "Event generators' and N(n)LO codes' acceleration" meeting

Improvements in the way the event generation is done

- Reducing negative events weight fraction
- Generation in interchangeable steps
 - Separate ME / Shower / Hadronisation where possible

Generation in interchangeable steps

Outrast Forme of	Les Houches		HepMC /	HepMC /
Output Format	Events		EVNT	EVNT
	◇	\longrightarrow \diamondsuit	\longrightarrow \Diamond	\longrightarrow \diamondsuit
Generator	Matrix Element	Parton Shower	Stable Particles	Afterburner
BEAM HALO GENERATOR			\checkmark	
Cavern Background Generator			✓	
Cosmic Ray Generator			\checkmark	
EPOS	Only Minimum Bias	1	\checkmark	
EvtGen				1
Herwig	$2 \rightarrow 2 \text{ LO} \text{ and NLO}$	1	1	
Hijing	Only Minimum Bias	1	\checkmark	
Hto4l	\checkmark			
Hydjet	Only Minimum Bias	1	\checkmark	
MadGraph5_aMC@NLO	\checkmark			
ParticleGun			✓	
Рнотоз				1
Powheg Box	✓			
Prophecy4f	\checkmark			
Protos	1			
Рутніа	Only $2 \rightarrow 2$	✓	\checkmark	
Рутніа 8В			✓	
QGSJet	Only $2 \rightarrow 2$ jets	✓	\checkmark	
Sherpa	✓	✓	\checkmark	
STARLIGHT		1	1	
SuperChic	1			
Tauola				1
Other Generators (via LHEF)	1			
Other Generators (via HepMC)			✓	

Stolen from C. Gütschow: talk Future event generation workflows

- Approach 1: produce parton-level samples centrally with input from the MC developers, provide them in a shared space for all experiments
 - → experiments run their preferred shower setup (
 - allows for affordable plug & play between different models (
 - lowers cost threshold for reproducing larger setups after some time if need be (V)
 - \rightarrow requires more storage for parton-level events (\times)
 - new infrastructure needs to be set up and maintained (X)

More interchangeable steps means more sophisticated systematic recipes and more flexibility in the (re-)generation of events

S

LHC Monte Carlo WG: kickoff meeting Dominic Hirschbühl | 14.11.2024

Technical points of interest

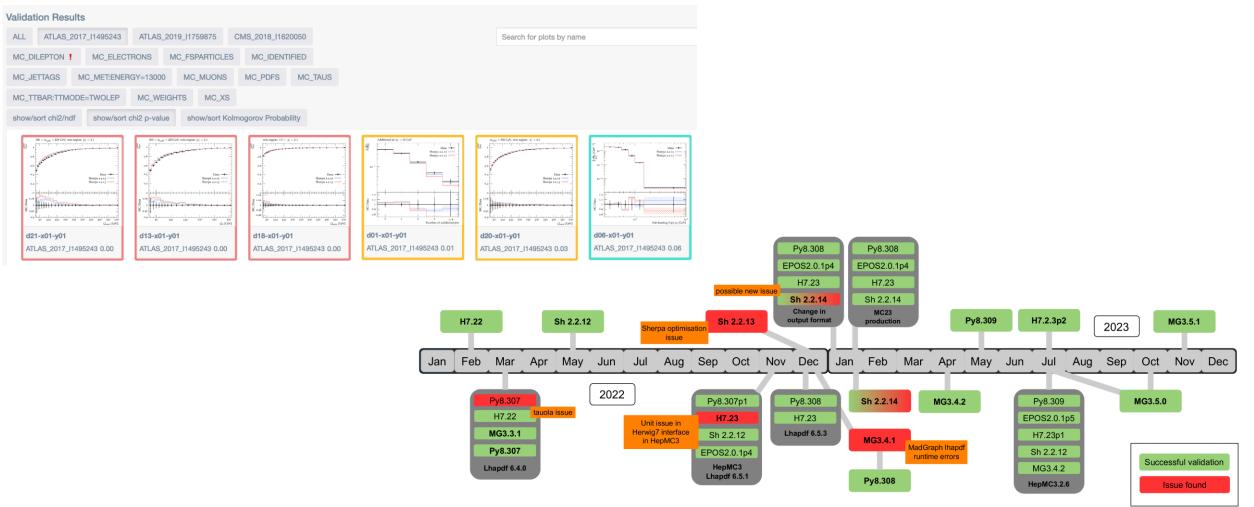
- Our production versions often lag development versions
- New advances are sometimes very hard to deploy or not well supported
 - MC event generators are running within our Athena framework using dedicated interface class
 - Athena framework is quite different from standalone running
 - \rightarrow relies on LCG layers, fixed versions of gcc, python etc.
 - Inclusion in our framework ensures consistency of general Parameters (EW parameters, particle masses, PDF sets, ett.)
 - Problems to feedback patches to the authors

 \rightarrow would be nice to have common infrastructure and software management

P	Powheg+Pythia8	Powheg Box v2	tł NLO	5FS	Рутніа 8.230	Powheg $h_{damp} = 1.5m_{top}$ $p_T^{hard} = 0$ globalRecoil recoilToColoured=ON	A14	nom.
Р	Powheg+Pythia8 h_{damp}	Powheg Box v2	$t\bar{t}$ NLO	5FS	Рутніа 8.230	Powheg $h_{damp} = 3m_{top}$	A14	syst.
Р	Powheg+Pythia8 $p_{\rm T}^{\rm hard}$	Powheg Box v2	tī NLO	5FS		$\begin{array}{l} POWHEG\\ p_{T}^{hard} = 1 \end{array}$	A14	syst.
Р	Роwнед+Рүтніа8 RecoilToTop	Powheg Box v2	tī NLO	5FS	Рутніа 8.230	Powheg recoilToTop	A14	syst.
Р	Powheg+Herwig 7	Powheg Box v2	tī NLO	5FS	Herwig 7.1.3	Powheg	H7.1-Default	syst.

Euer default $t\bar{t}$ sample for run 2 was setup 2017, we have:

- ~100B LHE events
- > 5B showered and simulated events

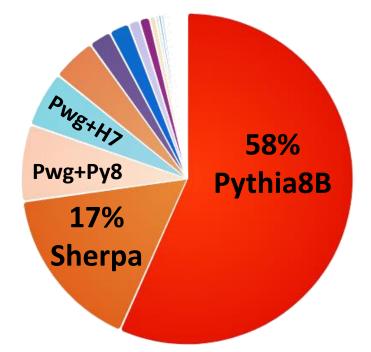

https://indico.cern.ch/event/1444046/contributions/6188473/attachments/2964686/5215638/LHCTopWG_111124_ttplusHF.pdf

5

Technical points of interest

Regular validations of all new generator versions using a RIVET based framework

ATL-PHYS-PUB-2024-013



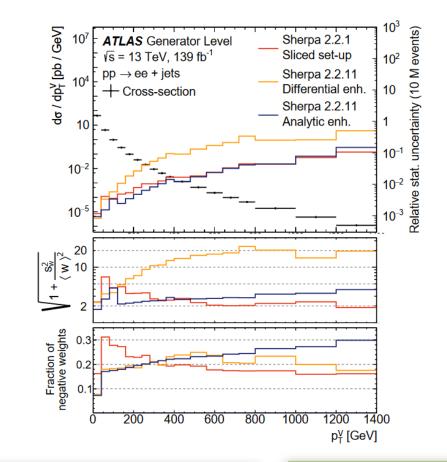
Generator techniques

• Efficient slicing

- Low statistics for very high cross-section kinematic regions
- Higher statistics in the tails of distributions
- Improving filter efficiency (high pT, heavy flavor, etc)
 - Ensuring we generate what we want
 - Major missing piece: 'flavor enhancement'
- New phase-space sampling techniques that avoid biases
 - Particularly for populating unusual kinematic regions
- Integrating systematic uncertainties as weights
 - Current systematic model comes with up to 7 alternative samples

CPU usage in the last 6 months

This is only a snapshot and not representative of the whole MC production.



Treatment of negative weights

• Negative weights are a statistics killer

Ο

- Statistical power of a sample with negative weight fraction ε is reduced by $1/(1-2\varepsilon)2$
- $\epsilon=25\% \rightarrow 4x$ larger sample is needed for the same statistical power
- If the negative weight fraction is >30%, samples are hardly usable
- Various techniques have been proposed for improving this
 - How can we ensure a widely-deployed solution?
 - Should we focus the community on one solution to avoid divergence?

Physics

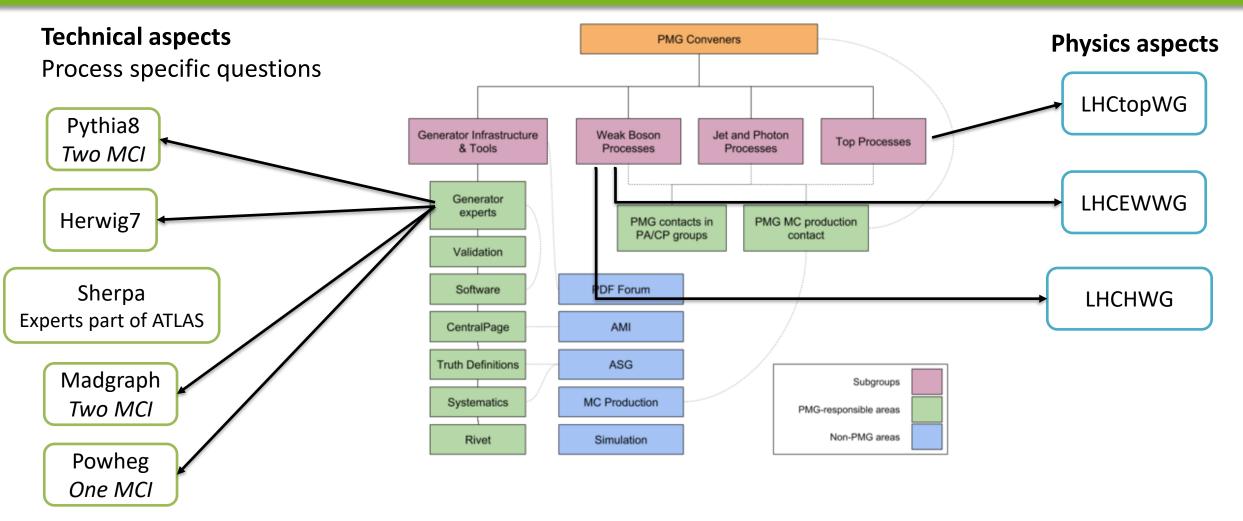
Modelling of specific processes

- Studies currently done with or without interactions with the authors
- ATLAS can provide quite some computing power and also person power through authorship qualifiers

Systematic uncertainties

Title	ATLAS link	Publication	Category	Dominant uncertainty
				grouped systematics
Search for same-charge top-quark pair production	TOPQ-2021-14	arxiv:2409.14982	search	ME&PS of ttW
Measurement of top-quark pair production in association with charm quarks	TOPQ-2021-26	arxiv:2409.11305	fiducial xs	tt modeling 9% of 17%
Search for ttH/A->tttt production	EXOT-2022-13	arxiv:2408.17164	search	tt+>=1b modelling (11% of 14%)
tW production	TOPQ-2018-07	Phys. Rev. D 110 (2024) 072010	incl. xs	Jet flavour composition
Measurement of tt production with additional b-jets	TOPQ-2019-03	arxiv:2407.13473	fiducial xs 3b	b-tagging
			fiducial xs 4b	jet

In many (almost all) analyses modelling uncertaintines are dominiant \rightarrow would be nice to have a common set of recommendations for specific generator setups (NLO+PS / Mulitjet matched/merged etc)


Physics

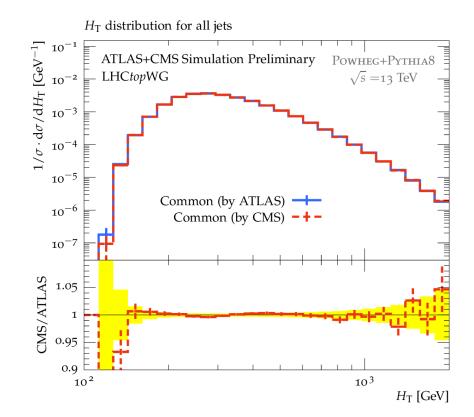
Tuning

- ATLAS was a bit sleeping on this topic in the last few years
- Growing interest but no concrete plans yet
- Interesting topic in the view of this group would be
 - To do some common tuning of different generators to reduce systematic uncertainties
 - Studies how universal current tunes are, i.e. in the view of NLO-merged setups
 - Do we need a consistent tuning of systematic variations, e.g. recoil-to-top vs. r_b

Collaboration

Regular invitations to the GIT meeting of generator experts MCI: *Monte Carlo Interactions*

LHC Monte Carlo WG: kickoff meeting Dominic Hirschbühl | 14.11.2024



Sharing events

Could save 50% of CPU and eventually disk space when sharing generated events

- Several practical advantages
 - Could at least overlay identical theory lines
 - Or have a common alternative sample
 - Or ATLAS alternative is CMS baseline etc.
- Could also save "integration time" of software
- First step done within the LHCtopWG:
 - Common Powheg+Pythia8 $t\bar{t}$ sample based on shared LHE files
 - Common Sherpa $t\overline{t}$ sample based on **identical config files**

 The main problem here is to agree on common parameters
→ MC community might propose default settings, especially for shower tunes

Summary

Technical point of interests

- Computing efficiency
- Generation in interchangeable steps
- Speed-up of new codes into our framework

Generator techniques

- Efficient slicing, improving filter efficiencies
- New phase-space sampling techniques that avoid biases
- Integrating systematic uncertainties as weights

Physics

- Developing common set of systematic uncertainty recommendations for specific generator setups
- Tuning \rightarrow universality of current tunes, consistent tuning of systematic uncertainties

Collaboration

- Tightening the interaction with the MC authors
- Sharing events / setups with other experiments

