

Update of thermo-mechanical studies for TCTPs (Pb ions)

L. Puddu, F. Carra

BLM Thresholds Meeting (Pb run 2024)

29/10/24

Outline

1. Introduction

2. Case 1a (halo heating)

3. Scraping

4. Conclusions

Introduction

Proposal: increase the Final TCT master thresholds from 2023 Pb run by a factor 3

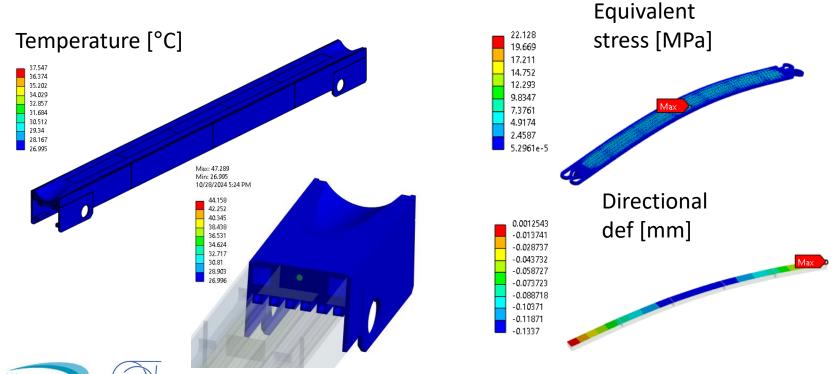
(at 6.8 TeV)	Master threshold	Deposited power in jaw* at present master threshold		
RS06 (10 ms)	0.11431 Gy/s	2.3-6.6kW		
RS07 (82 ms)	0.02859 Gy/s	0.6-1.7 kW		
RS08-12 (0.6s- 82s)	0.01457 Gy/s	0.3-0.9 kW		

Since, the thresholds for BPM are set on the impacting powers, the most conservative is case 1a (it maximizes the power deposition on the jaw for a set impacting power):

Deletive neuron demonstration in TOT for the different economics (new immediate)

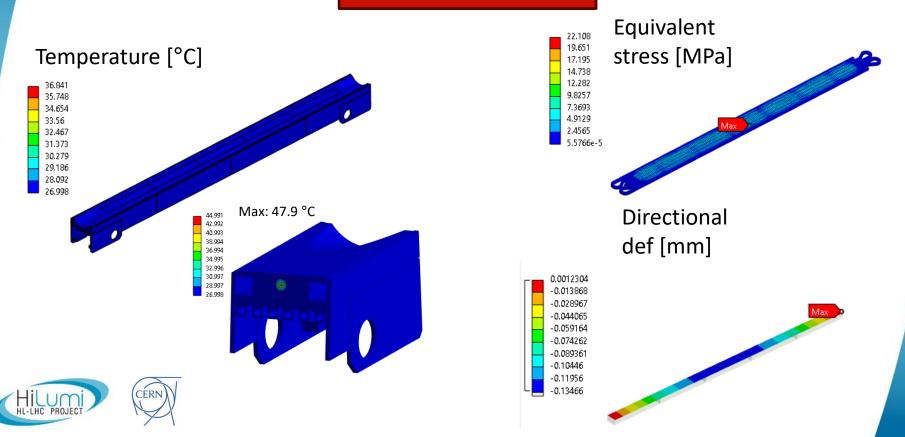
Relative power deposition in TCT for the different scenarios (per impacting ion):						
	Case 1a	Case 1b	Case 2			
Impacted jaw	65%	44%	7%			
Opposite jaw	7%	14%	4%			
Tank	3%	6%	2%			
Total	75%	64%	13%			

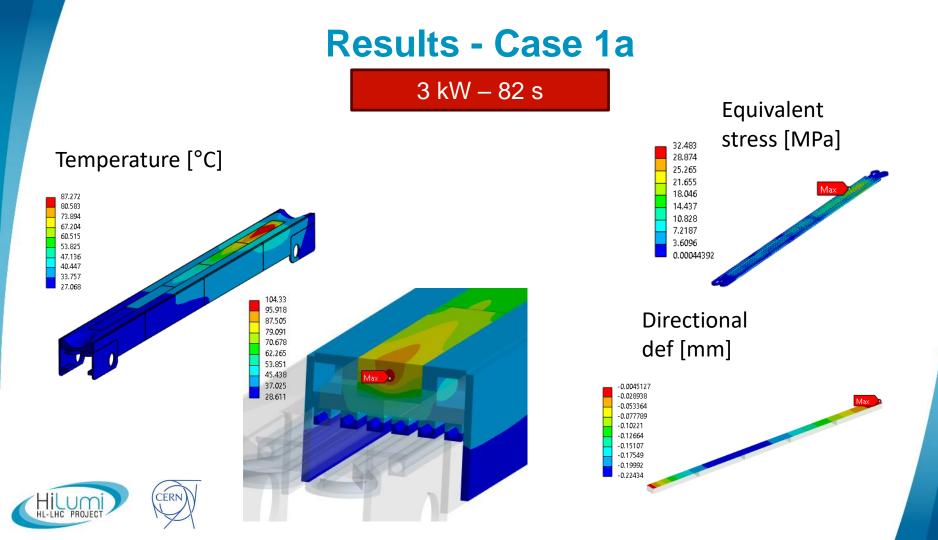
Introduction


- Case 1: halo leakage of ions from IR7 to the TCTP collimator (TCTPV)
 - A) impact of Gaussian beam ($\sigma_{x/v}$ =0.425mm, 9mm impact parameter, half-gap=0.7mm)
 - B) with tracking input: similar operational scenario, but based on real tracking simulations
- Case 2: accidental case (direct beam scraping on the TCTP).

Master threshold	Deposited power in jaw* at present	Time	Power deposited [kW]	Number of particles/second
0 11/31 Gy/s		10 ms	20	3.43E+08
0.02859 Gy/s	0.6-1.7 kW	82 ms	6	1.03E+08
0.01457 Gy/s	0.3-0.9 kW	82 s	з	5.15 e7
	threshold 0.11431 Gy/s 0.02859 Gy/s	thresholdin jaw* at present master threshold0.11431 Gy/s2.3-6.6kW0.02859 Gy/s0.6-1.7 kW	thresholdin jaw* at present master threshold10 ms0.11431 Gy/s2.3-6.6kW10 ms0.02859 Gy/s0.6-1.7 kW82 ms	threshold in jaw* at present master threshold [kW] 0.11431 Gy/s 2.3-6.6kW 10 ms 20 0.02859 Gy/s 0.6-1.7 kW 82 ms 6 0.01457 Gy/s 0.3-0.9 kW - -

Results - Case 1a


20 kW - 10 ms



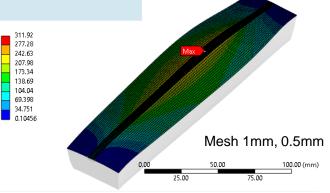
Results - Case 1a

6 kW – 82 ms

Results - Case 1a

Reminder:

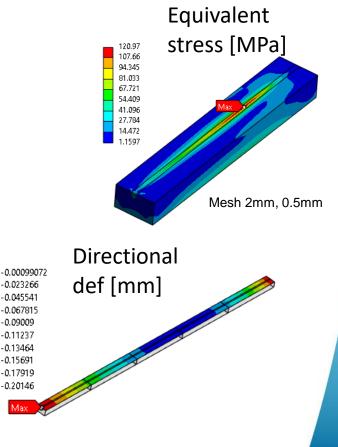
- Yield stress CuNi pipes = 120 MPa
- Yield stress Inermet180 = 640 MPa


Deposited Power	Time [s]	Tmax jaw [°C]	T probe [°C]				Max stress [MPa]	
[kW]					Pipes	Blocks		
20	10 e-2	47.3	27.0	27.0	133	22.1	18.0	
6	82 e-3	47.9	27.0	27.0	133	22.1	21.5	
3	82	105.5	31.9	44.6	220	32.5	65	

Scraping 3kW, 20 s – Results

Evaluation of stress on inermet: Simplified (and conservative) sub-model

Мар	Mesh size	Max Temp [°C]	Eq. Stress [MPa]
2	0.5 mm	121	
2 3	0.5mm (0.1mm)	163	312
2 3	0.5mm (0.05mm)	163	



Scraping 3kW, 20 s – Results

More accurate model: Entire model with finer mesh at the power peak

-0.045541

-0.067815

-0.09009

-0.11237

-0.13464

-0.15691

-0.17919

-0.20146

Scraping fast losses (0.1 s) – Results

Deposited Power	Time [s]	Tmax jaw [°C]	T probe [°C]					Max stress [MPa]	
[kW]						Pipes	Blocks		
9	10 e-2	60.3	27.0	27.0	130	24.5	58.8		
3	10 e-2	38.1	27.0	27.0					

Conclusions

- After the analysis of case 1a, an increase in BPM thresholds by a factor of 3 does not present any thermo-structural issues.
- For the scraping scenario, the stress analysis on the inermet, which was previously left incomplete, has now been concluded:
 - with a deposited power of 3 kW for 20 s, we reach approximately 50% of the yield strength of the inermet (with the conservative sub-model).
 - if the thresholds are set as discussed before, we actually dump at ~ 400W in the case of scraping, so almost 1/10 less than what was simulated

Thank you for your attention Questions?

