18 - 30 July 2011, Geneva, Switzerland

Electron Neutrino Flux Measurement at T2

Javier Caravaca

Base (Barcelona)

The T2K Experiment

 Long baseline neutrino oscillation experiment in Japan

Send a ν_μ beam to the Far Detector
 (SuperKamiokande) 300 km away

• Discovery v_e appearance \rightarrow measure θ_{13}

Precise measurement of ν_μ disappearance

ND280 is a detector placed at 280m
 from the neutrino production point

Measure beam properties before the oscillation

KAMIOKA

\$uperKamiokande

295 km

TOKAI

v component

- ◆ T2K uses a v_{||} beam
- With the $\nu_{_{\mu}}$ also some $\nu_{_{e}}$ are produced coming from μ and K decays
- \bullet The $\nu_{_{e}}$ component is the main background to
- $v_{\underline{a}}$ appearance and has to be measured at

ND280

MC prediction: ~ 1.5%ν

- To measure them we select neutrino interactions in the ND280 Tracker
- Require negative tracks in the TPC and measure their momenta
- Distinguish muons from electrons using the dE/dx in the TPCs

v_e at ND280

When we select electrons we have three different background together with electrons coming from ν_{a}

- Gamma conversions producing electrons in TPC:
 - Gammas coming from pi0 decay $(v_{\mu} -> \mu + p + \pi_0)$
 - Gammas coming from outside the detector
- Misidentified muons

- $\mbox{\ {\tiny of}\ }$ After the selection of $v_{_{e}}$ candidates most of the signal is due to background
- The most important is the EM background
- Likelihood fit to measure the number of events coming from v_a

EM Background measurement

To control the background coming from γ conversions we select pair e+ e- coming from a photon decay

If the pair comes from a photon, the invariant mass must be zero

According to the MC, we are able to select a very clean sample of e+e- tracks

Conclusion

- The v_e beam component is an important background to the oscillation and has to be measured in ND280
- We have done a first measurement of this component finding a ratio in good agreement with MC

$$\frac{v_e}{v_{\mu}} = 1.0 \pm 0.7 (stat) \pm 0.3 (syst)\%$$

- To improve this analysis is very important to try to reduce and control the backgrounds
- → In particular we can control electromagnetic background by selecting photon conversions giving e+etracks in the TPC

