

Unitarity Violation in Low Scale Seesaw Schemes

Universitat de València

DAVID VANEGAS FORERO

AHEP Group. Instituto de Física Corpuscular – CSIC/UVEG

In collaboration with S. Morisi, M. A. Tórtola & J. W. F. Valle

Neutrino mass in $SU(2)_L \times U(1)$ - The (n, m) models

Type-I and type-II Seesaw schemes

The quadratic part of the neutrino Lagrangian is:

$$\mathcal{L} = \sum_{lpha} \left[-i
ho_{lpha}^{\dagger} \sigma_{\mu} \partial_{\mu}
ho_{lpha} - rac{1}{2} \left(
ho_{lpha}^{T} \sigma_{2} M_{lphaeta} \rho_{eta} + H.c
ight)
ight],$$

the symmetric neutrino mass matrix M_{ν} can be decomposed as:

 $M_{\nu} = \left(\begin{array}{cc} M_1 & M_D \\ M_D^T & M_2 \end{array}\right),$

without Higgs triplet:

$$M_{\nu} = \begin{pmatrix} \rho_n & \rho_m \\ 0 & M_D \\ M_D^T & M_R \end{pmatrix} \implies \text{type-I Seesaw.}$$

we need to transform to the physical states: $\rho_i = \sum_j U_{ij} \nu_j$
 $U^T M_{\nu} U = \text{real, diagonal} \quad (U \text{ Unitary})$

Mass matrix diagonalization

Diagonalization, by making the ansatz:

$$U = \mathcal{U} \cdot V = \exp(iH) \cdot V \qquad H = \begin{pmatrix} 0 & S \\ S^{\dagger} & 0 \end{pmatrix}, \qquad V = \begin{pmatrix} V_{1} & 0 \\ 0 & V_{2} \end{pmatrix}.$$
$$U = \begin{pmatrix} (I - \frac{1}{2}S S^{\dagger}) & V_{1} & i S V_{2} \\ i S V_{1} & (I - \frac{1}{2}S^{\dagger}S) & V_{2} \end{pmatrix} + O(\epsilon^{3}),$$
where we defined the hierarchy parameter: $\epsilon \equiv M_{D} M_{R}^{-1}$, we obtain:
$$i S^{*} = -M_{D} M_{R}^{-1} \Rightarrow$$
$$U = \begin{pmatrix} (I - \frac{1}{2}M_{D}^{*}(M_{R}^{*})^{-1} M_{R}^{-1} M_{D}^{T}) & V_{1} & M_{D}^{*}(M_{R}^{*})^{-1} V_{2} \\ -M_{R}^{-1} M_{D}^{T} V_{1} & (I - \frac{1}{2}M_{R}^{-1} M_{D}^{T}) & V_{2} \end{pmatrix} + O(\epsilon^{3})$$

and finally, after block diagonalization:

 $m_{\nu} = -M_D M_R^{-1} M_D^T$

$$\begin{aligned} \mathcal{L} \supset i \frac{q}{\sqrt{2}} W_{\nu} \sum_{a=1}^{n} \overline{L}_{a} \gamma_{\mu} \rho_{aL} + h.c. \\ \mathcal{L} \supset i \frac{q}{\sqrt{2}} W_{\nu} \overline{l}_{b} K_{b\alpha} \gamma_{\mu} \nu_{\alpha L} + h.c. \\ \text{where } K_{b\alpha} = \sum_{c=1}^{n} \Omega_{cb}^{*} U_{c\alpha}. \\ \text{We could define:} \\ K \equiv (K_{L}, K_{H}), \\ \text{where } K_{L} \sim \left(1 - \frac{1}{2}SS^{\dagger}\right) V_{1} \equiv (1 - \eta)V_{1} \\ K_{H} \sim (iS)V_{2} \\ (\text{type-I}) \quad \boxed{\eta \approx \frac{1}{2}SS^{\dagger}} \sim \frac{1}{2}\epsilon^{*}\epsilon^{T}. \\ M \sim 10^{13} \, GeV \quad m_{D} \sim 10^{2} \, GeV \quad \Rightarrow \qquad \epsilon \approx 10^{-11} \Rightarrow \eta \approx 10^{-22} \end{aligned}$$

Low scale seesaw schemes

Inverse seesaw	Linear seesaw	Diagonalization
Introducing two sets of SU(3) \otimes SU(2) \otimes U(1) singlets ρ_m and S, the effective	In the simplest LR model:	In an approximate way we could calculate the block diagonalizing matrix as:

neutrino mass matrix is:

$$M_{\nu} = \begin{pmatrix} \rho_n & \rho_m & S \\ 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & 0 \end{pmatrix},$$

where global lepton number conservation $U(1)_L$ was assumed.

The global lepton number could be broken everywhere the zero entries are. If we introduce a mass $\mu_{ij}S_iS_j$ term, we break L in two units:

> $\rho_n \qquad \rho_m \qquad S$ $M_{\nu} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix},$

> $m_{\nu} = M_D M^{T^{-1}} \mu M^{-1} M_D^T$

Because the smallness of the light neutrino mass m_{ν} is due to the smallness of the μ mass, which is different in the type-I seesaw, this mechanism is named as inverse.

When $\mu \to 0$ a global number symmetry is recovered and neutrinos are massless. The smallness of μ is natural, in 't Hooft sense.

 $\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}$ with additional gauge singlet fermion $S_L \sim (1, 1, 0)$ (and the right-handed antiparticle $(S_L)^c = S_B^c$:

 $-\mathcal{L}_{Leptons}^{Yukawa} = [\bar{\Psi}_L(Y_1\phi + Y_2\tilde{\phi})\Psi_R + h.c] + [Y_3(\bar{\Psi}_L\chi_LS_R^c + \bar{\Psi}_R\chi_RS_L) + h.c]$ where $\phi \sim (2, 2, 0), \ \tilde{\phi} \equiv \tau_2 \phi^* \tau_2, \ \chi_L \sim (2, 1, -1), \ \chi_R \sim (1, 2, -1).$

After R breaking by $\langle \chi_R \rangle = v_R$, and EW breaking by:

$$<\phi>=\left(egin{array}{cc} \kappa & 0 \\ 0 & \kappa' \end{array}
ight),$$

and possibly of $\langle \chi_L \rangle = v_L$, and defining: $M_L \equiv Y_3 v_L$, $M \equiv Y_3 v_R$ and $M_D = Y_1 \kappa + Y_2 \kappa'$, we find:

$$M_{\nu} = \begin{pmatrix} 0 & M_D & M_L \\ M_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}$$

and finally, after block diagonalization the light neutrino matrix is: $m_{\nu} = M_D (M_L M^{-1})^T + (M_L M^{-1}) M_D^T.$

 $\mathcal{U} = R_{23}(\pi/2) R_{13}(S) R_{12}(S)$ where R are rotations. Using the *Schechter-Valle* parameterization for the last two rotations, we have:

$$\begin{split} \mathcal{U} &= \begin{pmatrix} I - S \, S^{\dagger} & iS & iS \\ 0 & \frac{1}{\sqrt{2}} \left(I + \frac{1}{2} S^{\dagger} S \right) & -\frac{1}{\sqrt{2}} \left(I - \frac{1}{2} S^{\dagger} S \right) \\ i \sqrt{2} S^{\dagger} & \frac{1}{\sqrt{2}} \left(I - \frac{3}{2} S^{\dagger} S \right) & \frac{1}{\sqrt{2}} \left(I - \frac{1}{2} S^{\dagger} S \right) \end{pmatrix} \\ & \text{where} \quad i S^{*} = -\frac{1}{\sqrt{2}} m_{D} \left(M^{T} \right)^{-1}. \end{split}$$
and we define:

 $M \sim 10^3 GeV \quad m_D \sim 10^2 GeV \quad \Rightarrow \quad \epsilon \approx 10^{-1} \Rightarrow \eta^{I,L} \approx Percent!$

Finally. the neutrino mixing matrix is:

 $\eta^{I,L} \approx S S^{\dagger}.$

$$U = \mathcal{U} \cdot \begin{pmatrix} V_1 & 0 & 0 \\ 0 & V_2 & 0 \\ 0 & 0 & V_3 \end{pmatrix},$$

where V_i diagonalizes each block and we assumed that $V_1, V_2 \sim I_i$

Constraining $|\eta_{ij}|$ in the low scale seesaw schemes

We have always the freedom to $\mu = \text{diag}\{\mu_i\}$ then we can use the Casas-Ibarra parameterization for m_D :

$$m_D = V_1 \operatorname{diag}\{\sqrt{m_i}\} R^T \operatorname{diag}\{\sqrt{\mu_i^{-1}}\} M^T \text{ where } R^T = R^{-1}$$

For real m_D matrix and assuming $M = \text{diag}\{M_i\}$ we finally have 9 free parameters.

To easily find points that fulfills $(m_D) < 175 \, GeV$ we scan over the remaining free parameters, in the following way:

> $\mu_{ii} = v_{\mu} \, \left(1 + \varepsilon_{ii} \right)$ $M_{ii} = v_M (1 + \varepsilon_{ii})$ where $|\varepsilon| \sim 5 \times 10^{-1}$.

The M matrix scale v_M was fixed to 1 TeV while v_L scale was scanned over (0.1 -10) eV values.

• Unitarity violation in the low scale seesaw mechanism is not strongly constrained

Proc.	$\mu \to e \gamma$		$\tau \to e\gamma$		$\tau \to \mu \gamma$	
Н	NH	IH	NH	IH	NH	IH
$ \eta_{12}^{I} <$	1.5×10^{-3}	1.5×10^{-3}	2.8×10^{-2}	2.8×10^{-2}	2.8×10^{-2}	2.8×10^{-2}
$ \eta^I_{13} <$	2.0×10^{-2}	2.1×10^{-2}	1.2×10^{-2}	1.2×10^{-2}	3.1×10^{-2}	3.2×10^{-2}
$ \eta^I_{23} <$	$2.6 imes 10^{-2}$	2.7×10^{-2}	6.3×10^{-2}	4.3×10^{-2}	$1.3 imes10^{-2}$	$1.3 imes 10^{-2}$
$ \eta_{12}^L <$	2.2×10^{-3}	$1.4 imes10^{-3}$	5.2×10^{-2}	5.2×10^{-2}	5.3×10^{-2}	5.7×10^{-2}
$ \eta^L_{13} <$	$3.6 imes 10^{-2}$	4.2×10^{-2}	1.2×10^{-2}	$1.1 imes 10^{-2}$	4.8×10^{-2}	$4.8 imes 10^{-2}$
$ \eta^L_{23} <$	2.8×10^{-2}	3.4×10^{-2}	5.5×10^{-2}	5.4×10^{-2}	$1.3 imes10^{-2}$	$1.3 imes 10^{-2}$

• Since the bounds on η are not strongly constrained, they could be probed at future Neutrino Factories.