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Neutrino mass in SU(2)L × U(1) - The (n,m) models

Type-I and type-II Seesaw schemes

The quadratic part of the neutrino Lagrangian is:

L =
∑

α

[

−iρ†ασµ∂µρα −
1

2

(

ρTασ2Mαβ ρβ +H.c
)

]

,

the symmetric neutrino mass matrix Mν can be decomposed as:

Mν =

(

M1 MD

MT
D M2

)

,

without Higgs triplet:

ρn ρm

Mν =

(

0 MD

MT
D MR

)

⇒ type-I Seesaw.

we need to transform to the physical states: ρi =
∑

j Uijνj

UT Mν U = real, diagonal (U Unitary)

Mass matrix diagonalization

Diagonalization, by making the ansatz:

U = U · V = exp(iH) · V H =

(

0 S
S† 0

)

, V =

(

V1 0
0 V2

)

.

U =

( (

I − 1
2
S S†) V1 i S V2

i S V1

(

I − 1
2S

† S
)

V2

)

+O(ǫ3),

where we defined the hierarchy parameter: ǫ ≡ MDM−1
R , we obtain:

i S∗ = −MDM−1
R ⇒

U =

( (

I − 1
2M

∗
D(M

∗
R)

−1M−1
R MT

D

)

V1 M ∗
D(M

∗
R)

−1 V2

−M−1
R MT

D V1

(

I − 1
2M

−1
R MT

D M∗
D (M ∗

R)
−1
)

V2

)

+O(ǫ3),

and finally, after block diagonalization:

mν = −MDM
−1
R MT

D

Charged current in seesaw mechanism

L ⊃ i g√
2
Wν

∑n
a=1LaγµρaL + h.c.

L ⊃ i
g√
2
WνlbKbαγµναL + h.c.

where Kbα =
∑n

c=1Ω
∗
cbUcα.

We could define:

K ≡ (KL,KH),

where KL ∼
(

1− 1

2
S S†

)

V1 ≡ (1− η)V1

KH ∼ (i S)V2

(type-I) η ≈ 1

2
S S† ∼ 1

2
ǫ∗ǫT .

M ∽ 1013GeV mD ∽ 102GeV ⇒ ǫ ≈ 10−11 ⇒ η ≈ 10−22

Low scale seesaw schemes

Inverse seesaw

Introducing two sets of SU(3) ⊗ SU(2) ⊗ U(1) singlets ρm and S, the effective
neutrino mass matrix is:

ρn ρm S

Mν =





0 MD 0
MT

D 0 M
0 MT 0



 ,

where global lepton number conservation U (1)L was assumed.

The global lepton number could be broken everywhere the zero entries are. If we
introduce a mass µijSiSj term, we break L in two units:

ρn ρm S

Mν =





0 MD 0
MT

D 0 M
0 MT µ



 ,

mν = MDM
T−1

µM−1MT
D

Because the smallness of the light neutrino mass mν is due to the smallness of the
µ mass, which is different in the type-I seesaw, this mechanism is named as inverse.

When µ → 0 a global number symmetry is recovered and neutrinos are massless.
The smallness of µ is natural, in ,t Hooft sense.

Linear seesaw

In the simplest LR model:

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

with additional gauge singlet fermion SL ∼ (1, 1, 0) (and the right-handed
antiparticle (SL)

c = Sc
R):

−LY ukawa
Leptons = [Ψ̄L(Y1φ + Y2φ̃)ΨR + h.c] + [Y3(Ψ̄LχLS

c
R + Ψ̄RχRSL) + h.c]

where φ ∼ (2, 2, 0), φ̃ ≡ τ2φ
∗τ2, χL ∼ (2, 1,−1), χR ∼ (1, 2,−1).

After R breaking by < χR >= υR, and EW breaking by:

< φ >=

(

κ 0
0 κ′

)

,

and possibly of < χL >= υL, and defining: ML ≡ Y3υL, M ≡ Y3υR and
MD = Y1κ + Y2κ

′, we find:

Mν =





0 MD ML

MT
D 0 M

MT
L MT 0





and finally, after block diagonalization the light neutrino matrix is:

mν = MD(MLM
−1)T + (MLM

−1)MT
D.

Diagonalization

In an approximate way we could calculate the block diagonalizing matrix as:

U = R23(π/2)R13(S)R12(S)

where R are rotations. Using the Schechter-Valle parameterization for the last
two rotations, we have:

U =







I − S S† iS iS
0 1√

2

(

I + 1
2S

†S
)

− 1√
2

(

I − 1
2S

†S
)

i
√
2S† 1√

2

(

I − 3
2
S†S

)

1√
2

(

I − 1
2
S†S

)






,

where iS∗ = − 1√
2
mD (MT )−1.

and we define:
ηI,L ≈ S S†.

M ∽ 103GeV mD ∽ 102GeV ⇒ ǫ ≈ 10−1 ⇒ ηI,L ≈ Percent!

Finally. the neutrino mixing matrix is:

U = U �





V1 0 0
0 V2 0
0 0 V3



 ,

where Vi diagonalizes each block and we assumed that V1, V2 ∼ I .

Constraining |ηij| in the low scale seesaw schemes

Lepton Flavor Violating processes

The mixing of light neutrino with heavy neutrino gives at one loop LFV effects
that are related to the unitarity deviation. The resulting branching ratio is given by:

BR(li → ljγ) =
α3
Ws2W
256π2

m5
li

M 4
W

1

Γli

|GW
ij |2

where

GW
ij =

9
∑

k=4

K∗
ikKjkG

W
γ

(

m2
Nk

M 2
W

)

GW
γ (x) = −2x3 + 5x2 − x

4(1− x)3
− 3x3

2(1− x)4
lnx

li lj

WW

Nk

γ

as Kbα ∼ Ubα(S) Then ηI,L ↔ BR(li → ljγ)

Numerical results – Inverse seesaw

We have always the freedom to µ = diag{µi} then we can use the Casas-Ibarra
parameterization for mD:

mD = V1 diag{
√
mi}RT diag{

√

µ−1
i }MT where RT = R−1

For realmD matrix and assumingM = diag{Mi} we finally have 9 free parameters.

To easily find points that fulfills (mD) < 175GeV we scan over the remaining free
parameters, in the following way:

µii = vµ (1 + εii)

Mii = vM (1 + εii) where |ε| ∼ 5× 10−1.

The M matrix scale vM was fixed to 1TeV while vµ scale was scanned over (0.1−
10) eV values. The oscillation parameters were scanned at 3σ.
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Numerical results – Linear seesaw

mD = V1 diag{
√
mi}ATdiag{√mi}V T

1

(

MT
L

)−1
MT

Where AT + A = I . We have always the freedom to choose ML = diag{MLi
}.

For realmD matrix and assumingM = diag{Mi} we finally have 9 free parameters.

The scan over the parameters satisfies the same conditions and procedure like we
did for the inverse scheme.

The M matrix scale vM was fixed to 1TeV while vL scale was scanned over (0.1−
10) eV values.
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Summary

• Unitarity violation in the low scale seesaw mechanism is not strongly constrained
by the charged lepton flavor violating processes. The results are:

Proc. µ → eγ τ → eγ τ → µγ

H NH IH NH IH NH IH

|ηI
12
| < 1.5× 10−3 1.5× 10−3 2.8× 10−2 2.8× 10−2 2.8× 10−2 2.8× 10−2

|ηI
13
| < 2.0× 10−2 2.1× 10−2 1.2× 10−2 1.2× 10−2 3.1× 10−2 3.2× 10−2

|ηI
23
| < 2.6× 10−2 2.7× 10−2 6.3× 10−2 4.3× 10−2 1.3× 10−2 1.3× 10−2

|ηL
12
| < 2.2× 10−3 1.4× 10−3 5.2× 10−2 5.2× 10−2 5.3× 10−2 5.7× 10−2

|ηL
13
| < 3.6× 10−2 4.2× 10−2 1.2× 10−2 1.1× 10−2 4.8× 10−2 4.8× 10−2

|ηL
23
| < 2.8× 10−2 3.4× 10−2 5.5× 10−2 5.4× 10−2 1.3× 10−2 1.3× 10−2

The more constraining ηij bounds are in red.

• Since the bounds on η are not strongly constrained, they could be probed at
future Neutrino Factories.


