Ettore Majorana meets his shadow (IV)

J.J. Gómez-Cadenas Instituto de Física Corpuscular CSIC-U.Valencia

Xenon for DBD searches

Yields

Good yield

- Twice better than Ge-76
- 50% worse than Se-82, Te-130 or Nd-150

Easy to procure and enrich

• Already 700 kg of Xe-136 in the world.

- 400 kg (KamLAND-ZEN)
- 200 kg EXO
- 100 kg NEXT

•Standard enrichment requires gasification of material and separation in centrifuges.

•Xe is a noble gas (no need to gasify) and Xe-136 the heaviest isotope (simplest case for mass separation in centrifuges).

•Compared with other isotopes Xe-136 is by far the easiest to procure and enrich

• In cost and difficulty about one order of magnitude less than other isotopes

Slow bb2nu mode

• Sensitivity limit for $\beta\beta 2\nu$ only, infinite statistics.

Slow bb2nu mode

Source = Detector

- Large detectors
- Mass goes with L³
- Large mass and good fiduciality

Kamland-Zen

- Xenon dissolved in liquid scintillator.
- Very radiopure balloon of 2 m radius
- High efficiency (~80%)
- Phase I 400 kg of Xenon.
- PHASE-II 1 ton of Xenon.
- Poor resolution (about 10% at Qbb)
- claims b~10⁻⁴ ckky (self-shielding)
- Diffusion through balloon?

Background model

Summary of BG and signal in signal region

¹³⁶ Xe 2v	²⁰⁸ TI	²¹⁴ Bi	10 C	¹¹ Be	8B	Total	¹³⁶ Xe 0v
2.08	1.86×10 ⁻²	2.40	3.09	0.26	1.52	9.35	18.08
±0.15	±0.13×10 ⁻²	±0.01	±0.01	±0.01	±0.03	±0.23	±0.02

[events/year]

- Purely MC studies.
- Backgrounds can increase sizably if bb2nu for Xenon is faster than 10²² y
- Aggressive assumptions for tagging capabilities (90% 10C, 60% 214Bi)
- Assumes extreme radiopurity of both scintillator and balloon (10⁻¹² g/g in U and Th).
- results in b~10⁻⁴ ckky

background ~(2-5) ×10⁻⁴ ckky Scalability (Mass Cost feasibility & to 350-1000 kg

R&D on radiopure balloon liquid scintillator readout electronics starts in 2012? 2013?

EXO-200

- 200 kg of liquid Xenon (enrichment at 80%)
- High efficiency (~70%)
- Mediocre resolution (about 4% at Qbb), but excellent self shielding.
- b~10⁻³ ckky (background model not very detailed in literature)

SIGNALS in EXO

- Fast scintillation (S1) is used to locate the event t0.
- In LXe scintillation also provides a measurement of energy.
- Ionization charge drifts under the action of electric field andis read by wires. It provides a second measurement of the energy.

• A resolution of about 4% FWHM is obtained combining both measurements.

Backgrounds for EXO (and for NEXT)

Xe TPCs are mostly affected by external backgrounds. Surface backgrounds are greatly reduced by defining a strict fiducial volume.

The Xenon landscape & resolution

NEXT

- 100 kg of pressurized Xenon (enrichment at >90%), P=15 bar
- Moderate efficiency (~30%)
- Good resolution (better than 1% at Qbb).
- Transparent to background
- b~10⁻⁴ ckky (purely MC calculation)

Energy resolution

•Intrinsic energy resolution in gas phase ~ 0.5%

•Liquid: much worse resolution due to anomalous Fano Factor.

Extra handles

•Topological signature (tracking of the two electrons) available in NEXT!

Picture of a bb0nu experiment

Signals in a light Xenon TPC

- •Xe scintillates as response to charged particles. A fast response (S1) that can be used to define z position of the event.
- The ionization charge drifts to the anode. There charge is transformed in light when it is accelerated through an EL mesh (electroluminescence). A second, large signal (S2) appears.

Electroluminescence

- At 15 bar with 0.5 cm spacing and E/P~3.5 kV/cm/bar
- G~3000 photons/electrons
- Linear gain. Resolution limited, a priory only by Fano's Factor.

- Anode: sensors optimized for tracking (e.g, SiPMs)
- Cathode: sensors optimized for energy measurement (PMTs).
- Energy sensors also measure S1 (t0)

- TPC filled with highly enriched (>90%) ¹³⁶Xe gas at 10 bar pressure.
- Chamber walls lined with material highly reflective to UV light.
- Baseline detector with ~100 kg fiducial mass (2 m³): NEXT-100.

- A 136Xe isotope decays emitting the two electrons.
- They propagate through the HPXe ionizing and exciting its atoms.

- Prompt primary scintillation light emission in VUV (~175 nm). About 100 eV needed to create a primary scintillation photon.
- Detect faint signal via sensitive photo-detectors (PMTs) behind transparent cathode.
- Determine t_0 and therefore event position along drift.

- Create ionization charge in Xe: ~25 eV to create one electron-ion pair.
- Electrons drift toward anode with velocity ~1 mm/us in a ~1kV/cm electric drift.
- At 10 bar pressure, non-negligible diffusion: 9 mm/√m transverse, 4 mm/√m longitudinal).

- Additional grid in front of anode creates ~0.5 mm thick region of more intense field: E/p ~4 kV/cm/bar.
- Secondary scintillation light (electroluminescence) created in between grids by atomic de-excitation, with very linear gain of order 10³ and over a ~2us interval.
- Finely segmented photo-detector plane (MPPCs) just behind anode performs "tracking".

- Electroluminescence, emitted isotropically, also reaches cathode.
- Same array of photo-detectors used for t₀ measurement is also used for accurate calorimetry.

Energy plane

Tracking plane

. ... 12 and a ALL CLD ALL ALL ALL ALL LA GE GA TH ALL EUR KON and the state of the 0.0 1004 1004 1004 and all all all all C D 0 0 0 0 0 . . THE OTHER REPORT OF A DESIGN O the case of a set of a set

NEXT-1 SiPM tracking plane-->NEXT100 is a larger version, same concept

Large scale prototypes

•Prototypes at LBNL & IFIC

Energy resolution

With small setups, intrinsic resolution using EL close to fano factor NEXT has measured 0.4 % (Qbb) resolution

Measured by NEXT!

Energy resolution

• Energy resolution measured with NEXT-1 (LBNL prototype) is 1.8% FWHM

• This extrapolates to better than 1% (NEXT target value)

• We hope to improve this number in the next year or so to intrinsic resolution.

Measured by NEXT!

Tracking

•alpha-graphy of NEXT1-IFIC field cage

Measured by NEXT!

•MC reconstruction of a bb0nu event in NEXT1 (notice the two ionization balls)

Backgrounds

Extreme blob cut

