Ettore Majorana meets his shadow (III)

J.J. Gómez-Cadenas Instituto de Física Corpuscular CSIC-U.Valencia

DBD Game

- Discovery: Free trip to Stockholm
- Not Discovery: What exactly did you do in the last 20 years?

Not Discovery

Heidelberg-Moscow experiment: •35 kg·yr exposure • $T_{1/2}^{0v} > 1.9 \cdot 10^{25}$ yr • $m_{_{BB}} < 0.35$ eV (0.3 – 1.24 eV)

• 6.4 σ significance • $T_{1/2}^{0v} = (2.23^{+0.44}) \cdot 10^{25}$ yr • $m_{\beta\beta} = (0.32 \pm 0.03)$ eV • With NME uncertainties: $m_{\beta\beta} = (0.1 - 0.9)$ eV

Or discovery?

bbonu sensitivity to mbb

DBD Lifetime

$$\begin{split} T_{\beta\beta2\nu} &\sim 10^{18} - 10^{20} \, y \\ T_{\beta\beta0\nu} &\sim 10^{26} - 10^{27} \, y \end{split}$$

Germanium: 8 events per ton year for a period of 10^{27} y

Why DBD experiments are difficult

Very long lifetime

- Uranium and Thorium are weakly radioactive, with a lifetime of the order of 10⁹ y
 Exploring bbonu
- implies lifetimes of the order of 10^{25} y.
- Truly, a needle in a haystack.

Why DBD experiments are underground

Muon flux

Experiments who want to register one or two events of signal and no background per year, cannot live with high muon flux
Underground is also

• Underground is also quiet and controlled working conditions

Measuring Tbb

 $T_{1/2}^{-1} \propto a \cdot \mathcal{E} \cdot M \cdot t$

Background free

$$T_{1/2}^{-1} \propto a \cdot \varepsilon \sqrt{\frac{M \cdot t}{\Delta E \cdot B}}$$

Background dominated

a: isotopic abundance
ɛ: efficiency
M: source mass
t: time
ΔE: energy resolution
B: background (keV yr kg)⁻¹

DBD is all about optimizing this parameters

2 min 0,51 Ingredients for the ultimate neutrinoless double beta experiment 8 9 10 SU 400 0,51 0 + (= 10 min = **Plot Credits: Michel Sorel**

Isotopes

Q (MeV) Abund.(%)

⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge → ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2,228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2,533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

Abundance:

- Worse case is Ca-48
- Best case is Te-130 (only practical for a "natural element experiment)

Enrichment

- Most experiments need to operate with the element enriched at > 80% in the isotope.
- Easiest isotope to enrich:

Xe-136.

• Difficult: Ca-48, Nd-150

Isotopes

Q-value:

The highest the Q value the better for backgrounds (both bb2nu and natural radioactivity)

- Worse case is Ge-76
- Best cases Ca-48 and Nd-150
- Most others about the same

Phase space must be as high as possible.

- Best case: Nd-150
- Worse case: Ge-76
- All others: about the same

NME must be as high as possible.

- Best case: Ge-76
- Worse case: Nd-150
- According to PMR: all quite close

Isotope	W	$Q_{\beta\beta}$	$ M_{0\nu} $	$ G_{0\nu} ^{-1}$	$T_{1/2}^{0\nu}(m_{\beta\beta} = 50 \text{ meV})$	$N_{0\nu}/N_{0\nu}({ m Ge})$
	(g/mol)	(keV)		(10^{25} y eV^2)	(10^{27} y)	
$^{76}\mathrm{Ge}$	75.9	2039	4.07	4.09	0.95	1.0
^{82}Se	81.9	2996	3.48	0.93	0.26	3.3
130 Te	129.9	2528	3.63	0.59	0.18	3.1
136 Xe	135.9	2458	2.82	0.55	0.25	2.1
150 Nd	149.9	3368	2.33	0.13	0.15	3.3

Absolute rate (in this case relative to Ge-76)

- Worse case: Ge-76
- Next-to-worse: Xe-136
- All others: about the same (50 % better than Xe-136, 3 times better than Ge-76)

Sensitivity to $m_{\beta\beta}$

• for *ideal* experiments based on different isotopes

So what is the best isotope?

jueves 28 de julio de 2011

$$T_{1/2}^{-1} \propto a \cdot \boldsymbol{\mathcal{E}} \cdot \boldsymbol{M} \cdot \boldsymbol{t}$$

$$T_{1/2}^{-1} \propto a \cdot \varepsilon \sqrt{\frac{M \cdot t}{\Delta E \cdot B}}$$

- $\bullet \Delta E$ is the resolution. At best constant when you increase the mass
- •B is the background rate in *c/(kev·kg·year)*. To keep it constant one needs to decrease the counts/kg (since the mass increases). **Very difficult**.

Background free

Accumulate as much mass as possible. Also, improve linearly with mass (in period)
It is very difficult to make a background free experiment (but we will try)

Background dominated

• Only worth to improve M (in or to be exact $M \cdot t$) if you can keep the product $\Delta E \cdot B$ constant.

Resolution

Ideal detector

Good detector (3% FWHM resolution)

Easy, right?

jueves 28 de julio de 2011

Resolution

Ideal detector

Good detector (3% FWHM resolution)

Easy, right?

Resolution

- In fact, very difficult.
- bb0nu (typically) 10¹⁸-10¹⁹
- Next generation bb0nu: 10²⁶ -->7 orders of magnitude bb2nu
- Need better resolution than 5% to eliminate bb2nu

The Xenon landscape & resolution

Black: signal with 0.2% resolution (as seen by a Ge calorimeter)

Red: Bi-214

Blue: Tl-208

The Xenon landscape & resolution

Background rate

Plot Credits: Michel Sorel

Depends on the technology

Experimental approaches

Borrowed from A. Giuliani

DBD Triathlon

- Be there first
- Minimize background
- Maximize mass

DBD Rubik's cube

Gerda

- Naked Ge-76 diodes immersed in LAr.
- Excellent resolution of 0.15% FWHM at Qbb
- High efficiency (~80%)
- PHASE-I 18 kg of Ge-76 (enriched at 85%) from the Heidelberg-Moscow and IGEX experiments -->background rate 10⁻² ckky
- PHASE-II 40 kg of Ge-76 -->b~10⁻³ ckky

Background in Gerda Phase II

The 2007 Europhysics Conference on High Energy Physics	IOP Publishing
Journal of Physics: Conference Series 110 (2008) 082010	doi:10.1088/1742-6596/110/8/082010

 Table 1. Estimate of the background level expected in the GERDA experiment for a simplified

 Phase II setup at the present level of R&D.

Detector part	Contribution $[10^{-4} \text{ counts}/(\text{kg·keV·y})]$
Germanium detector (cosmogenic 68 Ge)	10.8
Germanium detector (cosmogenic ⁶⁰ Co)	0.3
Germanium detector (bulk)	3.0
Germanium detector (surface)	3.5
Cabling	7.6
Copper holder	3.4
Electronics	3.5
Cryogenic liquid	0.1
Infrastructure	2.9
Muons and neutrons	2.0
Total	37.1

- TeO2 bolometers (shielded by lead).
- Excellent resolution of 0.2% FWHM at Qbb (2530 keV)
- High efficiency (~80%)
- 800 kg of natural Te (34% Te-130)
 200 kg of isotope

Cuoricino --> b= 0.18 ckky (kg of detector)

MC calculations -->b=10⁻² ckky

Cuore backgrounds

- I) 2615 keV ²⁰⁸TI line. Due to the contamination between the inner Roman lead shield and the external lead shield (cryostat). Contributes 30%. Thicker Roman lead shield is needed combined with a better cryostat design. CUORE projects that the background due to ²⁰⁸TI will be< 10⁻³ ckky.
- (2) Degraded alpha particles. They produce a flat background in the energy region above the ²⁰⁸Tl line. Their contribution to the background is 70%. These alpha particles are coming from U and Th crystal surface contamination (20 ± 10) % and from Cu surface contamination (50 ± 10) %. The contamination can be controlled with proper surface treatments (including chemical etching and polishing with clean powders). Measured contamination projected on CUORE is < 3 x 10^{-3} ckky.
- (3) Flat background in the 3-4 MeV region. It is believed to be due to the surface contamination of the inert part of the detector. In this region measured contamination projected on CUORE is 2 4 x 10⁻² ckky.
- Thus, background model suggests 10-2 ckky

CUORE's cube

Scalability (mass cost)

200-400 kg

background 4x10⁻² -10⁻³ ckky

> feasibility & to Cuoricino, Cuore0 starts in 2011, full CUORE in 2014

Kamland-ZEN cube

background

teasibility R&D on radiopure balloon liquid scintillator readout electronics starts in 2012? 2013?

SNO+

- Nd dissolved in liquid scintillator.
- No inner ballon, thus lower efficiency (~50%)
- Natural Nd (5.6% abundance of Nd-150).
- 780 tons of liquid scintillator, at 0.1% loading of Nd (43.6 kg of isotope).
- Poor resolution (about 6% at Qbb)
- b~10⁻³ ckky (?)

SNO+ backgrounds

Fig. 2. Simulated SNO+ energy neutrino spectrum around Nd endpoint.

Backgrounds dominated by TI-208, B-8 neutrinos and bb2nu

Super Nemo

- Modules of Se-82 (or other)
- Mediocre efficiency (~30%)
- Mediocre resolution (~4% at Qbb) and topological signature.
- b~10⁻⁴ ckky (background model from MC calculations)
- Background model assumes extreme radiopurity of target sheets.
- Radon degassing difficult to prevent (no gas recirculation through cold traps)
- Very hard to scale (each module is 5-7 kg of isotope)
- Hard to shield from external backgrounds (many modules...)

Scaling Super Nemo

Modular detectors must be duplicated (20 for 100 kg)

Price & effort scales linearly

Backgrounds (proportional to surfaces) scale linearly

Room, maintenance, construction

Cost!

jueves 28 de julio de 2011

