Estimating Oscillation Parameter Sensitivities for LBNE with GLoBES

Matt Bass

Colorado State University

7/19/2011

Long-Baseline Neutrino Experiment (LBNE)

Long-Baseline Neutrino Experiment (LBNE)

• Primary Goal: Measurement of $\sin^2(2\theta_{13})$, δ_{CP} , and $sgn(\Delta m_{32}^2)$

General Long-Baseline Experiment Simulator (GLoBES)

- GLoBES is a C-library for describing neutrino experiments
- Flux, cross-sections, detector efficiencies and response functions provided to GLoBES via external input files

• Minimizes $\Delta \chi^2$ for the appropriate hypothesis (e.g. $\sin^2(2\theta_{13}) \neq 0$) incorporating oscillation parameter correlations and systematics

Estimating Sensitivities with GLoBES

- Compute $\Delta \chi^2$ for each point on a grid of simulated "true" δ_{CP} -sin²(2 θ_{13}) values compared to each null hypothesis:
 - $\sin^2(2\theta_{13}) = 0$
 - $\delta_{CP} = 0, \pi$
 - sgn(Δm²₃₂) = (for normal mass hierarchy)
- Plot the $\Delta \chi^2 = 9$ contours for each null hypothesis to get the non-zero θ_{13} , CPV, and MH sensitivities

Conclusions

- The Long-Baseline Neutrino Experiment is being designed for maximal sensitivity to the neutrino oscillation parameters $\sin^2(2\theta_{13})$, δ_{CP} , and $sgn(\Delta m_{32}^2)$
- GLoBES facilitates the estimation of sensitivities to these parameters
- We are using GLoBES to estimate sensitivities for LBNE
- Example studies:
 - What is the optimal distribution of ν and $\bar{\nu}$ running times?
 - What is the contribution of flux at the second oscillation maximum to the sensitivities?
 - Will systematics limit the sensitivity of the experiment?