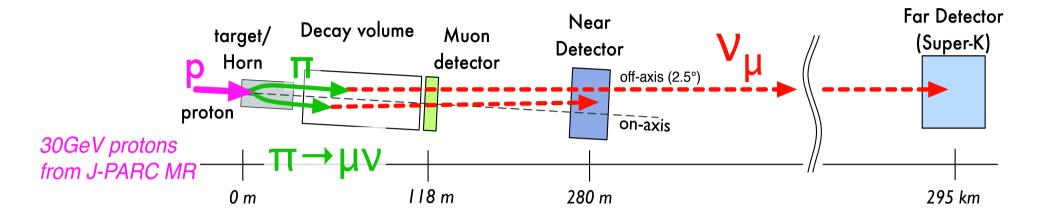


Chiraz Ferchichi



International Neutrino Summer School 2011

18 - 30 July 2011, Geneva, Switzerland

T2K is a long-baseline neutrino oscillation experiment that uses a v_{μ} beam peaked at 600 MeV

produced at J-PARC and directed to Super-Kamiokande

Main goals of T2K:

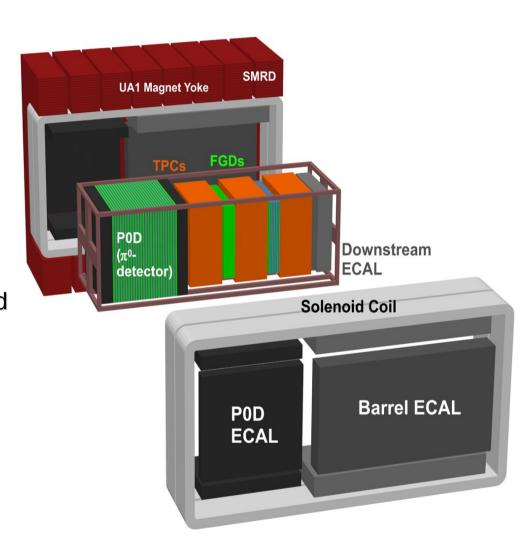
The search for θ_{13} by discovering v_e appearance

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E}\right)$$

The precise measurement of θ_{23} and Δm^2_{23} by v_{μ} disappearance

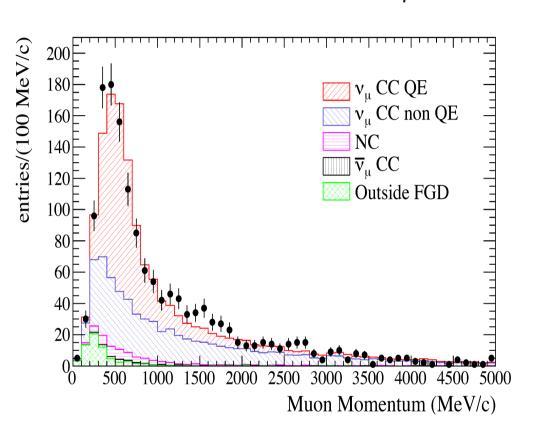
$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

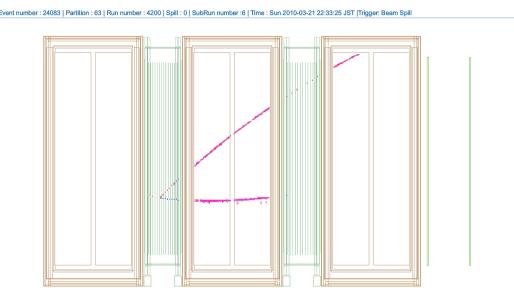
Off-axis Near Detector (ND280)


Located at 280m from the proton target, off-axis angle of 2.5°.

Different detector types:

- POD (π0 detector);
- Tracker: 3 Time Projection Chambers (TPCs)
- + 2 Fine Grained Detectors (FGDs);
- Ecal (Electromagnetic calorimeter);
- SMRD (Side Muon Range Detector) embedded in the magnet yoke.


Goals:


- To predict event rate at the far detector without oscillation
- •To measure the neutrino flux and spectrum
- To characterize the beam composition

Off-axis Near Detector (ND280)

An inclusive v_{μ} charged-current (CC) measurement

Basic CC neutrino candidate

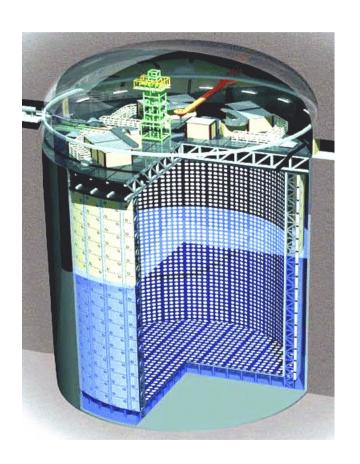
Measured data/MC ratio is:

$$R_{ND}^{\mu,Data}/R_{ND}^{\mu,MC} = 1.036 \pm 0.028 (\text{stat.})_{-0.037}^{+0.044} (\text{det.syst.}) \pm 0.038 (\text{phys.syst.})$$

Super-Kamiokande (SK)

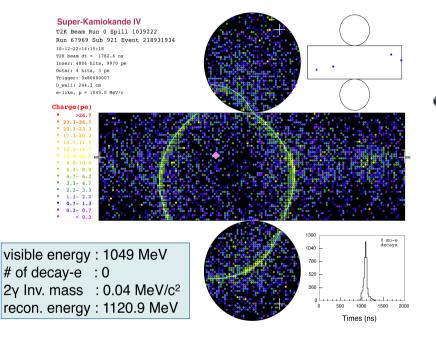
50 kton Cherenkov water detector

Criteria of selection v_e event in SK


Fully-contained fiducial volume event
Single ring e-like

Visible energy > 100 MeV

No decay electron


Reconstructed invariant mass < 105 MeV

Neutrino energy reconstructed < 1250 MeV

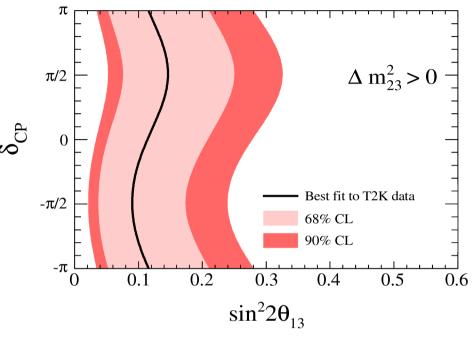
Super-Kamiokande (SK)

v_e candidate event

• With 1.43*10²⁰ protons on target \rightarrow 6 observed ν_e events remain after all cuts

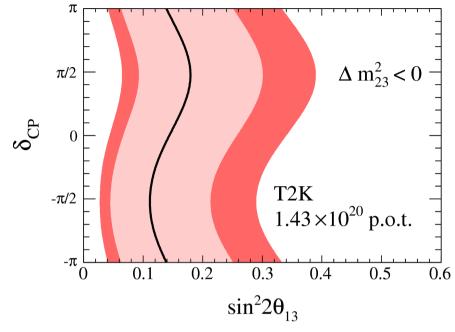
• Assuming $|\Delta m^2_{23}| = 2.4*10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1$ and at $\sin^2 2\theta_{13} = 0 \rightarrow \text{The expected number of } v_e$ events is 1.5 ± 0.3 (syst.):

*
$$0.03 v_{\mu} + v_{\mu} CC$$


* 0.8 intrinsic v_e CC

* 0.1 $\nu_{\mu} \rightarrow \nu_{e}$ oscillation events

* 0.6 NC event

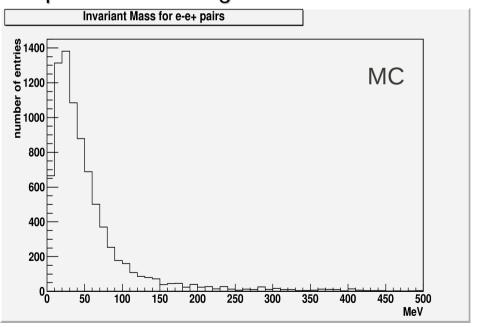

First v_e appearance result

Reference: Indication of Electron Neutrino Appearance, accepted for publication by PRL, arXiv:1106.2822

Normal hierarchy

$$0.03 < \sin^2 2\theta_{13} < 0.28$$
 $\sin^2 2\theta_{13} = 0.11$ at $\delta_{CP} = 0$ and 90% C.L.

Inverted hierarchy


$$0.04 < \sin^2\!2\theta_{13} < 0.34$$

$$\sin^2\!2\theta_{13} = 0.14 \ \ \text{at } \delta_{CP} = 0 \ \text{and } 90\% \ \text{C.L.}$$

Under the θ_{13} = 0 hypothesis, the probability to observe 6 or more candidate events is 7*10⁻³

(equivalent to 2.5σ significance)

My current thesis work

- \bullet The intrinsic v_e component in the beam is measured before oscillation.
- \bullet In ND280, most of the electrons do not come from v_e CC interactions.
- One important background in the ν_e flux measurement is due to NC interactions producing a π^0 in the final state.
- In order to find π^0 s produced in the FGD, we search for an e⁺e⁻ pair in the TPC coming from a gamma conversion in the FGD plus an isolated gamma in the Ecal.

Invariant mass of the e⁺e⁻ coming from a gamma conversion

Thank you for your attention!