Experimental fundamentals II

A. Marchionni, ETHZ INSS11, Cartigny, 18-30 July, 2011

- 1. Historical introduction
- 2. Neutrino interactions
- 3. Astrophysical neutrinos
- 4. Neutrinos from accelerators
- 5. Neutrino detectors at accelerators
- 6. Beta decay and reactor neutrinos

Neutrinos from accelerators

NuMI: v's at the Main Injector

- **→** a neutrino beam from Fermilab to northern Minnesota
 - > over 735 km to Soudan mine (MINOS far detector)
 - > over 810 km to NOvA

NuMI as an Off-Axis beam

For a given $\theta \neq 0$, a large range of pion energies contributes to a small range of neutrino energies

Off-axis beam from ME configuration

The NuMI beamline

Water-cooled segmented graphite target

• 47 2.0 cm segments; total length of 95.4 cm

2 parabolic horns carrying

- Up to 200 kA current provides up to 3T fields
- Target can be remotely positioned up to 2.5m upstream of the first horn to change beam energy

T2K: Tokai to Kamioka

T2K v beamline

T2K target station

Focusing devices (Horns)

Focuses all momenta for a given angle of pion into the horn. It produces a broad band beam.

With a parabolic shaped horn inner conductor, the horn behaves like a lens (p_t kick proportional to the distance from the axis), with a focal length proportional to the momentum

Multi-horn systems

Multi-horn system: the NuMI case

- Fully optimized spectra for each energy are obtained by moving the target and the 2^{nd} horn, but most of the effect is due to the position of the target
- in LE configuration, 2/3 of the target length is positioned inside the 1st horn

NuMI Horn 1

- Made of Aluminum 6061
- Outer conductor anodized (corrosion, insulation)
- Inner conductor nickel plated (corrosion, fatigue)

Targets

NuMI target, 95.4 cm long

T2K target

- Isotropic Graphite 1.8g/cm³
- 26mm(Ø)x900mm(L), 1.9 $\lambda_{\rm I}$
- Thermal shock stress (ΔT~200K) ~ 7MPa (< tensile strength 37MPa)
- Forced flow Helium gas cooling in Tialloy(Ti-6 A1-4V) container

Decay pipe and Hadron Absorber

T2K

- 96 m long steel tunnel
- 1.4x1.7 m² at the upstream end
- 3.0x5.0 m² at the downstream end

Beam dump

- Graphite blocks
- Water-pipe casted Al block attached to both side
- Up to 3 MW beam

Proton beam monitors

OTR, T2K

Profile monitor, T2K

Profile monitor, NuMI

- 5 µm Titanium foils
- Pitch 1 mm (8 units) or 0.5 mm (2 units)

Hadron/Muon Monitors

NuMI Hadron Monitor
@ end of decay pipe
Max flux ~ 10⁹ part./cm²/spill

4"×4" He parallel plate ion chambers ceramic wafers with Ag-Pt electrodes

T2K Muon Monitor sensor array covering 150 x 150 cm²

Ionization chamber array
49 sensors 75 x 75 mm²
ceramic parallel plate chambers
He with 1% N₂

Silicon PIN
photodiode array
49 sensors 10 x 10 mm²
>0.1% resolution in intensity