Introduction to

Neutrino Interaction Cross Sections

Morgan Wascko International Neutrino Summer School 2011 2011 07 23

Outline

Quasi-Elastic Scattering

- Described by Llewellyn-Smith formalism
- Form-factors parameterise nucleon weak charge distributions
 - F_V measured by electron scattering, F_P negligible due to kinematics,
 F_A assumed to be dipole

INSS 2011

- \bullet Important for accelerator ν beams
 - Dominant process near 1 GeV
 - Simple energy reconstruction

lorgan Wascko

Importance of M_A

M_A fit results

- Value of M_A changes scale & shape of Q² distribution
- Recent measurements at low energy on nuclear targets favour high value of M_A
 - But not at high energy!
- Also show increased suppression at low Q²
- F_A: not dipole form factor?
 - Is M_A an effective parameter?

Experiment	M _A Value (GeV)		
World Average(n,p)	1.03±0.03		
K2K SciFi (O)	1.20±0.12		
K2K SciBar (C)	1.14±0.10		
MiniBooNE (C)	1.35±0.17		
MINOS (Fe)	1.19±0.17		
NOMAD (C)	1.05±0.06		

M_A fit results

- Value of M_A changes scale & shape of Q² distribution
- Recent measurements at low energy on nuclear targets favour high value of M_A
 - But not at high energy!
- Also show increased suppression at low Q²
- F_A: not dipole form factor?
 - Is M_A an effective parameter?

Experiment	M _A Value (GeV)		
World Average(n,p)	1.03±0.03		
K2K SciFi (O)	1.20±0.12		
K2K SciBar (C)	1.14±0.10		
MiniBooNE (C)	1.35±0.17		
MINOS (Fe)	1.19±0.17		
NOMAD (C)	1.05±0.06		

Impulse

approximation

- Assume interaction involves only one nucleon
 - $\lambda > 1$ fm for Q²<1(GeV/c)²
- Neutrino experiments assume quasi-free interactions
 - Are nucleons actually quasi-free? If not, could we tell?
- Can low Q² region be described by impulse approximation?

Wascko

Nuclear Models

- Most experiments use RFG
- Most theorists prefer something else
- Effects neutrino energy reconstruction!
- Impacts oscillation experiment!

INSS 2011

Recent Measurements

Measuring a cross section

- We actually measure an event rate.
- No problem, we can solve for the cross section.
- Need to correct for background events, detector efficiencies, smearing.
- Need to calculate neutrino flux!

Measuring a cross section

- We actually measure an event rate versus E_v or Q^2 .
- No problem, we can solve for the cross section.
- Need to correct for background events, detector efficiencies, smearing.
- Need to calculate neutrino flux!

Morgan

Flux Predictions

Beam	E _p (GeV)	target	〈δΦ/Φ〉	E range	<Ε _v >	Hadron prod.exp.
CERN WANF	450	Be	7%	3-100	24.3	SPY (CERN)
NuMI	120	С	~20%?	1-20	4	MIPP (FNAL)
BooNEs	8	Be	9%	0.2-3	0.8	HARP (CERN)

Further Reading: NOMAD: <u>*NIMA* 515 (2003) 800-828</u> *NuMI:* <u>*AIP Conf.Proc.*967:49-52,2007 *MiniBooNE:* <u>*Phys.Rev.D***79** 072002 (2009)</u> *General:* <u>*Phys.Rept.*439:101-159,2007</u> *Morgan*</u>

INSS 2011

Hadron Production

- *MiniBooNE* example
- Range of MC flux predictions with different hadron models
 - 8 GeV protons on beryllium
- HARP pBe $\rightarrow \pi^+X$ data with MiniBooNE fits
 - Spline fit reduces integrated uncertainty from 17% to 9%
- Of course, hadron production isn't magic
 - Still need primary & secondary beam monitoring, etc.

Imperial College

London

MiniBooNE

- PMT hits separated into time clusters ("subevents")
- Reconstruct muon Cherenkov ring
 - First subevent
- Find decay electrons
- 27% efficiency 77% purity 146,070 events with 5.58E20POT
- Late subevents
- CCQE requires 1 late subevent

Imperial College London Saturday, 23 July 2011

INSS 2011

Morgan

MB fluxes

INSS 2011

MiniBooNE

- CCQE selection: require clean μ ring with matched decay electron
 - 1.4E5 events after cuts!
- Q² shape fits for M_A
 - discrepancies at high & low
 Q²!
 - M_A=1.35±0.17 GeV
- Low Q² deficit addressed with CCπ⁺ BG with data constraint
- First POT normalised crosssection!

SciBooNE event displays

Saturday, 23 July 2011

16

SB fluxes

Saturday, 23 July 2011

Morgan Wascko

17

SciBooNE

- Fine-grained vertex detector
 Carbon target
 - Carbon target
- Sensitivity to secondary tracks
 - simultaneously fit μ, μ+p, μ+π samples
 - Extract $\sigma_{QE}(E_v)$
- Also producing POT normalised cross-sections
- Similar discrepancies as seen by MiniBooNE

CCQE signal ; Backgrounds

AIP Conf.Proc.1189:145-150,2009

INSS 2011

Imperial College

Morgan Wascko

Lyubushkin, NuInt09

• Drift Chambers (target and momentum measurement)

Position resolution $< 200 \ \mu$ m (small angle tracks) Momentum resolution $\sim 3.5\%$ ($p < 10 \ {\rm GeV}/c$)

▲□▶▲□▶▲□▶▲□▶ = のへの

- Transition Radiation Detector for e^{\pm} identification: π rejection $\sim 10^3$ for electron efficiency $\geq 90\%$
- Lead glass Electromagnetic Calorimeter $\frac{\sigma(E)}{E} = (1.04 \pm 0.01)\% + \frac{(3.22 \pm 0.07)\%}{\sqrt{E (\text{GeV})}}$
- Muon Chambers for μ^{\pm} identification: efficiency \approx 97% (p_{μ} > 5 GeV/c)
- Hadronic Calorimeter for n and K_L^0 veto

Imperial College London

Morgan Wascko

19

NOMAD fluxes

NOMAD

- Drift chambers in magnetic field
 - "Mainly carbon" target
- Select v_{μ} and \overline{v}_{μ} CCQE events using strict PID and final state cuts
- Extract σ_{QE} with cross section ratios (DIS)
 - Use extracted σ_{QE} to infer value of M_A
 - Also fit Q² shape to check M_A
- M_A=1.05±0.06 GeV

INSS 2011

M. Dorman, HEP Seminar at Imperial, 2009

Events in the MINOS Detectors

 ν_{μ} CC Event

NC Event

Short event often with a diffuse shower.

What we use for the sterile neutrino analysis.

Ve CC Event

Short event with a compact, EM-like shower profile.

What we look for in the electron neutrino analysis.

Long muon track with hadronic activity at the vertex.

What we look for in the muon neutrino / anti-neutrino analyses.

22

MINOS fluxes

Saturday, 23 July 2011

INSS 2011

23

MINOS

- Iron calorimeter with magnetic field
 - Intense flux \Rightarrow high statistics
 - (Already published CC inclusive $\sigma_v S$ [*Phys.Rev.D* 81, 072002 (2010)])
- Select v_{μ} events with low hadronic shower energy
- Fit Q² distribution for M_A
 - M_A=1.19±0.17 GeV
- Non-dipole F_A fits ongoing.

INSS 2011

CCQE comparisons

Plot courtesy of Teppei Katori (MIT)

INSS 2011

Antineutrino intro

Size Matters

Size Matters

INSS 2011

Size Matters

27

MINERvA

 $\overline{\nu_{\mu}} p \rightarrow \mu^{+} n$

- Muon is a long, penetrating track
- Neutron may or may not appear in the detector

8 March 2011

MINERvA

- Absolute normalization: protons + flux + cross-sections
- Recoil cut leaves Quasi-Elastic sample largely untouched, but reduces backgrounds significantly

Morgan

MINERvA

Event deficit is flat in Q² and not flat in E_v

Morgan

Ways to improve purity

- The current strategy is generous in keeping signal events,
 - at the price of leaving a significant background, particularly at high Q².
- This event illustrates two future background reduction techniques

 Recoil energy near the track

 Michel electron veto to remove π[±]

Neutrino horns cannot focus (or sign-select) pion passing *inside* the inner conductor.

More π + produced than π -, so unfocused beam is predominantly ν_{μ} not $\overline{\nu_{\mu}}$.

INSS 2011

Wrong Sign BGs

Wrong Sign BGs

In neutrino running, Gang of Four wrong sign backgrounds 9000 -weighted N, (arbitrary POT) **MiniBooNE** are very small (2%) 8000 \mathcal{V}_{μ} 7000 In antineutrino running 6000 they are much larger (~30%) for BooNEs 5000 neutrino 4000 background Cherenkov calorimeters 3000 cannot distinguish μ^{-} 2000 from μ^+ (event by event) 1000 Need a way to extract 0 2.5 E_v (GeV) 0.5 1.5 2 \cap 1 the WS BGs!

Imperial College

34

MiniBooNE

Antineutrinos

- Very few measurements of nubar CCQE near 1 GeV
- Horn focussing leads to wrong sign (WS) backgrounds
 - neutrinos in antineutrino mode
- MiniBooNE has sophisticated analysis to constrain WS BGs
 - Different angular distributions

Putting these in context

What do we need?

- Need to predict event rates and kinematics of final state particles
- Need to reconstruct neutrino energy accurately
- Need to accurately predict background contamination
- Need precise neutrino-nucleus cross-sections

INSS 2011

Need good models

Saturday, 23 July 2011

Imperial College

London

CCQE and Oscillations

- Current models cannot describe K2K, MiniBooNE, SciBooNE observations.
- Model dependence will always injected into data analysis
 - Energy, Q² reconstruction
 - Background subtraction
- Using current models will always give such uncertainties.
 - Need better models!

MiniBooNE v_e appearance systematic uncertainties

Source	Error(%)	
Flux from π +/µ+ decay	6.2	
Flux from K+ decay	3.3	
Flux from K0 decay	1.5	
Target and beam models	2.8	
v-cross section	12.3	
NC π0 yield	1.8	
External interactions ("Dirt")	0.8	
Optical model	6.1	
DAQ electronics model	7.5	

Conrad & Louis, FNAL Wine and Cheese Apr 11 2007

$\begin{array}{l} \mbox{MiniBooNE's final v_{μ}} \\ \mbox{CCQE result} \end{array}$

- Flux averaged double differential CCQE cross section
- Most complete, and least biased, information
 possible about the cross section based on the muon kinematics
 - Also being pursued for multi-particle final states
- Crucial input for theorists!

PhysRevD 81 092005 (2010)

Morgan

Wascko

Wrap up

Summary of measurements

- Recent measurements of v_{μ} CCQE scattering have much higher statistics and better controlled flux systematics than past.
- In 1 GeV region, experiments on nuclear targets show increased cross-section, harder Q² spectrum, and large suppression at low Q² (<0.2 GeV²).
 - Higher M_A? Non-dipole F_A? Nuclear model? Impulse approximation? Many body effects?
- At higher energy, world average model with RFG seems to work fine.

Morgan

Nascko

Growing Consensus

offer most robust confrontation

of theory and experiment)

Same goes for NC...

Saturday, 23 July 2011

43

What does model dependence mean?

- Distinguish between σ model and detector model
 - Any MC-derived quantity is, of course, modeldependent
- Restricting unsmearing, BG corrections, and efficiencies to detector MC quantities, not cross section processes is probably the best we can do
- This is why we push the idea
 of final state particle cross
 sections over process
 measurements

Imperial College London

Best way to present data?

- To get better models, we need theorists to use our data effectively
 - It's in our best interest to make that as easy as possible
- Typically, our goal is to produce cross section measurements
 - We use the detector MC to model the efficiency and smearing,
 - We then correct those effects with unfolding matrices and efficiency functions

45

Best way to present data?

- We could alternatively provide theorists with the tools to analyze our data the way that we do
 - For example, when fitting for M_A, we use the detector MC to make fake data sets, and modify the fake data sets until the MC matches data
 - For example, numbers of events in bins of p_{μ} , θ_{μ}
 - We obviously don't want to give away the detector MC, but we could provide efficiency functions (including smearing) with systematics and our measured data
 - The efficiency function could be applied to inclusive fake data samples, allowing theorists to perform analysis the way we do
 Obviously need to provide fluxes, too, but we already do that.

CCQE Conclusions

- We observe discrepancies between CCQE data and models, & between experiments.
- Flux constraints are crucial for cross section measurements.
- Need model independent measurements so that new models can be tested.
 - MiniBooNE has published world's first absolutely normalised double differential cross section!
 - New measurements from Fermilab can and should provide the needed data for better models.

Morgan

Conclusions

- Cross section measurements are needed to interpret neutrino oscillation data.
- New measurements are revealing problems left unseen by previous experiments.
 - These problems have consequences for oscillation experiments.
- New data analysis philosophies are needed so we can improve theoretical models.
- Observing CP violation relies on this!!

Morgan

Vascko

Thank you for your attention!

ご清聴ありがとうございました

水戸の梅の花