On the Oscillation of Neutrinos Produced by the Annihilation of Dark Matter inside the Sun

Arman Esmaili

Universidade Estadual de Campinas - UNICAMP

Instituto de Fisica Gleb Wataghin

A. E. and Yasaman Farzan; Phys. Rev. D 81 (2010) 113010 [arXiv:0912.4033 [hep-ph]],

A. E. and Yasaman Farzan; JCAP 1104 (2011) 007 [arXiv:1011.0500 [hep-ph]].

OUTLINE:

- A brief introduction to DM
- DM capture inside the Sun
- Coherence of neutrinos
- Seasonal effect
- Summary

Dark Matter Evidences

Bullet Galaxies

Rotation Curves

Dark Matter evidences

Other Evidences from a wide range of astrophysical observations

- Each observes dark matter through its gravitational influence
- Still no (reliable) indications of dark matter's particle nature

The Dark Matter Candidate Zoo

Axions, Neutralinos, Gravitinos, Axinos, Kaluza-Klein Photons, Kaluza-Klein Neutrinos, Heavy Fourth Generation Neutrinos, Mirror Photons, Mirror Nuclei, Stable States in Little Higgs Theories, WIMPzillas, Cryptons, Sterile Neutrinos, Sneutrinos, Light Scalars, Q-Balls, D-Matter, Brane World Dark Matter, Primordial Black Holes, ...

WIMPs (Weakly Interacting Massive Particles)

Thermal production———freeze out

$$\frac{dn_X}{dt} + 3Hn_X = - <\sigma_{X\bar{X}}|v| > (n_X^2 - n_{X,\,\text{eq}}^2),$$

$$n_{X, \text{eq}} = g_X \left(\frac{m_X T}{2\pi}\right)^{3/2} e^{-m_X/T}$$

$$\Omega_X h^2 \approx 0.1 \left(\frac{x_{\text{FO}}}{20}\right) \left(\frac{g_{\star}}{80}\right)^{-1/2} \left(\frac{a + 3b/x_{\text{FO}}}{3 \times 10^{-26} \text{cm}^3/\text{s}}\right)^{-1}$$

Generic weak interaction yields:

$$<\sigma> \sim \alpha^2 (100 \text{ GeV})^{-2} \sim \text{pb}$$

Jungman, Kamionkowski and Griest, Phys. Rep. 267 (1996) 195.

Detection of WIMPs

Direct Detection:

Effective Lagrangian

$$L = f_q(\overline{\chi}\chi) \cdot (\overline{q}q) + d_q(\overline{\chi}\gamma^\mu\gamma^5\chi) \cdot (\overline{q}\gamma_\mu\gamma^5q) + \dots$$
 scalar interaction spin-dep. interaction

Indirect Detection:

With Anti-Matter

With gamma rays (Fermi)

With Neutrinos

Capture of Neutrinos at the Sun

The evolution of the WIMP population is governed by the equation

$$\frac{t_{\odot}}{\tau_{\rm eq}} = 10^3 \left(\frac{C}{10^{25}\,{\rm sec}^{-1}}\right)^{1/2} \left(\frac{\langle \sigma_A v \rangle}{3\times 10^{-26}~{\rm cm}^3\,{\rm sec}^{-1}}\right)^{1/2} \left(\frac{7\times 10^8~{\rm cm}}{r_{th}}\right)^{3/2}$$

Detection of Neutrinos at the Earth

neutralino signal

 \bullet 30 GeV < M_{χ} < 5000 GeV

 vertically upward (Earth) horizontal (Sun)

atmospheric background

muons $\sim O(10^9)$ events/year

downward going

neutrinos ~O(10³) events/year
 all directions

atm. µ atm. v Sun up **IceCube** down atm. µ

IceCube Detector

 \triangleright Here we consider the case that DM+DM $\rightarrow \nu \nu$ Thus the neutrinos are monochromatic.

Average velocity of the DM particles in the Sun

$$(3T_{\odot}/m_{DM})^{1/2} \simeq 60 \text{ km/sec.}$$

We expect the spectrum on neutrinos remain monochromatic

$$L_{osc} = \frac{4\pi E_{\nu}}{\Delta m_{12}^2} \sim 3 \times 10^{11} \text{ cm } \left(\frac{E_{\nu}}{100 \text{ GeV}}\right) \left(\frac{8 \times 10^{-5} \text{ eV}^2}{\Delta m_{12}^2}\right)$$

Losc is of the order of the variation of Earth-Sun distance over a year

Observable seasonal effects should be seen

Average over the production point

$$r_{DM} \approx \left(\frac{9T}{8\pi G_N \rho m_{DM}}\right)^{1/2}$$

 $r_{DM} \sim 0.01 R_{sun}$

Widening of the wave packet

> Thermal widening

$$\frac{\Delta E}{E} \sim \frac{\bar{v}}{c} \sim 10^{-4} \left(\frac{T}{1.3 \text{ keV}}\right)^{1/2} \left(\frac{100 \text{ GeV}}{m_{DM}}\right)^{1/2}$$

Gravitational widening

$$\frac{\Delta p}{p} = \left(\frac{4\pi G \rho r_{DM}}{3m_{DM}}\right)^{1/2} \sim 5 \times 10^{-17} \left(\frac{100 \text{ GeV}}{m_{DM}}\right)^{1/2}$$

Natural width of the neutrino wave packet

$$\frac{\Delta p}{p} > \frac{n_{DM} \langle \sigma_{ann} v \rangle}{m_{DM}}$$

And

$$\frac{n_{DM} \langle v \sigma_{ann} \rangle}{m_{DM}} \sim 10^{-38}$$

Widening due to scattering

$$\ell_{NC} = \frac{1}{n_0 \sigma_{NC}} = 1.5 \times 10^6 \text{ km} \left(\frac{5 \times 10^{25} \text{ cm}^{-3}}{n_0} \right) \left(\frac{1.3 \times 10^{-37} \text{ cm}^2}{\sigma_{NC}} \right)$$

Matter density in the Sun falls as:

$$e^{-r/(0.1R_{\odot})}$$

ratio of neutrinos undergoing neutral current interactions should be of the order of

For $E_{\nu} = 500 \text{ GeV}$ The ratio will be 35 %

Seasonal Variation

We define:

$$\tilde{N}(t_0, \Delta t) \equiv \frac{\int_{t_0}^{t_0 + \Delta t} (dN_{\mu}/dt) \ dt}{\int_{t_0}^{t_0 + \Delta t} A_{eff}(\theta[t])/[L(t)]^2 \ dt}.$$

$$\Delta(t_1, \Delta t_1; t_2, \Delta t_2) \equiv \frac{\tilde{N}(t_1, \Delta t_1) - \tilde{N}(t_2, \Delta t_2)}{\tilde{N}(t_1, \Delta t_1) + \tilde{N}(t_2, \Delta t_2)}$$

Electron neutrinos at the Sun

	Δ (2	20Marcl	h, 186dε	ays)	$\Delta(3\text{April}, 186\text{days})$				
$E_{\nu} \; ({\rm GeV})$	$\theta_{13} = 0^{\circ}$		$\theta_{13} = 10^{\circ}$		$\theta_{13} = 0^{\circ}$		$\theta_{13} = 10^{\circ}$		
	NH	IH	NH	IH	NH	IH	NH	IH	
100	18 %	18 %	9 %	11 %	12 %	12 %	6 %	7 %	
300	57 %	57 %	37 %	42 %	60 %	60 %	39 %	43 %	

Muon neutrinos at the Sun

3	$\Delta(20$)Marc	h, 186c	lays)	$\Delta(3\text{April}, 186\text{days})$			
$E_{\nu} \; ({\rm GeV})$	$\theta_{13} = 0^{\circ}$		θ_{13} =	= 10°	$\theta_{13} = 0^{\circ}$		$\theta_{13} = 10^{\circ}$	
	NH	IH	NH	IH	NH	IH	NH	IH
100	9 %	6 %	4 %	1 %	7 %	4 %	3 %	0.3 %
300	12 %	7 %	6 %	19 %	13 %	7 %	6 %	20 %

We consider the flavor oscillation, matter effect inside the Sun, absorption and tau neutrino regeneration

$$\frac{dN_{\mu}^{\rm IC}}{dt} = \int_{E_{\rm thr}}^{m_{\rm DM}} \int_{E_{\rm thr}}^{E_{\nu\mu}} \frac{d\Phi_{\nu\mu}}{dE_{\nu\mu}} \left[\frac{d\sigma_{\nu p}^{\rm CC}}{dE_{\mu}} (E_{\nu\mu}) \rho_p + \frac{d\sigma_{\nu n}^{\rm CC}}{dE_{\mu}} (E_{\nu\mu}) \rho_n \right] \times A_{\rm eff}(E_{\mu}, \theta[t]) \left(R_{\mu}(E_{\mu}, E_{\rm thr}) + d \right) dE_{\mu} dE_{\nu\mu} + (\nu_{\mu} \to \bar{\nu}_{\mu})$$

$$\frac{dN_{\mu}^{\rm DC}}{dt} = \int_{E_{\rm thr}}^{m_{\rm DM}} \int_{E_{\rm thr}}^{E_{\nu_{\mu}}} \frac{d\Phi_{\nu_{\mu}}}{dE_{\nu_{\mu}}} \left[\frac{d\sigma_{\nu p}^{\rm CC}}{dE_{\mu}} (E_{\nu_{\mu}}) \rho_{p} + \frac{d\sigma_{\nu n}^{\rm CC}}{dE_{\mu}} (E_{\nu_{\mu}}) \rho_{n} \right] \times V_{\rm eff}^{\rm DC}(E_{\mu}) dE_{\mu} dE_{\nu_{\mu}} + (\nu_{\mu} \to \bar{\nu}_{\mu}) ,$$

Backgrounds:

Through-going events: ~ 6/year

DeepCore events: ~ 3/year

$$\theta_{13} = 0$$

$$m_{DM} = 270 \text{ GeV}$$

$$\theta_{13} = 7^{\circ}$$

$$m_{DM} = 270 \text{ GeV}$$

$$R \equiv \frac{\text{Number of } \mu\text{-track events}}{\text{Number of shower-like events}}$$

$$R \equiv \frac{\text{Number of } \mu\text{-track events}}{\text{Number of shower-like events}}$$

Muon-track events

 \bigcirc CC interaction of ν_{μ}

$$R \equiv \frac{\text{Number of } \mu\text{-track events}}{\text{Number of shower-like events}}$$

Muon-track events

 \bigcirc CC interaction of ν_{μ}

 \bigcirc CC interaction of \mathbf{v}_{τ}

$$R \equiv \frac{\text{Number of } \mu\text{-track events}}{\text{Number of shower-like events}}$$

Muon-track events

 \bigcirc CC interaction of ν_{μ}

 \bigcirc CC interaction of \mathbf{v}_{τ}

★ Shower-like events

Shower-like events

igcup NC interaction of $oldsymbol{
u}_{lpha}$

Shower–like events

 \bigcirc NC interaction of \mathbf{V}_{α}

CC interaction of V_e

Shower–like events

 \bigcirc NC interaction of \mathbf{V}_{α}

 v_{α} N X

 \bigcirc CC interaction of $\overline{\mathbf{v}_{\rho}}$

 $v_e \xrightarrow{N} N$

 \circ CC interaction of $\mathbf{V}_{\mathbf{\tau}}$

 $\Delta_{20 \mathrm{Mar}} \equiv \Delta(20 \mathrm{Mar}, 186 \mathrm{days}, 23 \mathrm{Sep}, 179 \mathrm{days})$

 $\Delta_{3\mathrm{Apr}} \equiv \Delta(3\ \mathrm{Apr}, 186\ \mathrm{days}, 6\ \mathrm{Oct}, 179\ \mathrm{days})$

	$m_{ m DM}$	N/I	θ_{13}	δ	R^{IC}	R^{DC}	$\Delta_{20\mathrm{Mar}}^{\mathrm{IC}}$	$\Delta_{3\mathrm{Apr}}^{\mathrm{IC}}$	$\Delta_{20\mathrm{Mar}}^{\mathrm{DC}}$	$\Delta_{ m 3Apr}^{ m DC}$
ı	197	N	0	0	0.4	14	0.7	0.7	0.7	0.7
ı	197	I	0	0	0.4	14	0.7	0.7	0.7	0.7
ı	197	N	7°	0	0.5	18	0.5	0.6	0.6	0.6
ı	197	I	7°	0	0.6	20	0.6	0.6	0.6	0.6
ı	197	N	7°	$\pi/2$	0.5	18	0.5	0.5	0.5	0.5
ı	197	I	7°	$\pi/2$	0.6	19	0.5	0.5	0.5	0.5
1	197	N	7°	π	0.4	14	0.6	0.6	0.6	0.6
ı	197	I	7°	π	0.5	16	0.4	0.5	0.4	0.5
ı	200	N	0	0	0.5	15	0.5	0.5	0.5	0.5
ı	200	I	0	0	0.5	15	0.5	0.5	0.5	0.5
ı	200	N	7°	0	0.6	19	0.4	0.5	0.4	0.4
ı	200	I	7°	0	0.7	22	0.4	0.4	0.3	0.4
ı	200	N	7°	$\pi/2$	0.6	17	0.4	0.5	0.4	0.4
ı	200	I	7°	$\pi/2$	0.7	19	0.4	0.4	0.4	0.4
ı	200	N	7°	π	0.5	14	0.4	0.4	0.4	0.4
ı	200	I	7°	π	0.5	15	0.4	0.4	0.4	0.4
ı	203	N	0	0	0.5	15	0.1	0.2	0.2	0.2
ı	203	I	0	0	0.5	15	0.1	0.2	0.1	0.2
ı	203	N	7°	0	0.6	19	0.1	0.1	0.2	0.2
ı	203	I	7°	0	0.7	20	0.1	0.1	0.1	0.1
ı	203	N	7°	$\pi/2$	0.6	19	0.0	0.0	0.1	0.1
	203	I	7°	$\pi/2$	0.6	19	0.0	0.1	0.1	0.1
9	203	N	7°	π	0.5	15	0.1	0.1	0.2	0.2
8	203	I	7°	π	0.6	17	0.1	0.1	0.2	0.2

 $DM + DM \rightarrow v_e v_e$

	$m_{ m DM}$	N/I	θ_{13}	δ	R^{IC}	R^{DC}	$\Delta_{20\mathrm{Mar}}^{\mathrm{IC}}$	$\Delta_{3\mathrm{Apr}}^{\mathrm{IC}}$	$\Delta_{20\mathrm{Mar}}^{\mathrm{DC}}$	$\Delta_{3\mathrm{Apr}}^{\mathrm{DC}}$
8	197	N	0	0	1.0	47	0.1	0.1	0.0	0.1
8	197	I	0	0	1.0	48	0.1	0.1	0.0	0.1
	197	N	7°	0	0.9	42	0.1	0.1	0.1	0.1
8	197	I	7°	0	0.9	42	0.1	0.1	0.1	0.1
	197	N	7°	$\pi/2$	0.9	44	0.1	0.1	0.1	0.1
8	197	I	7°	$\pi/2$	1.0	48	0.0	0.0	0.0	0.0
	197	N	7°	π	1.0	51	0.0	0.0	0.0	0.0
8	197	I	7°	π	1.0	50	0.0	0.0	0.0	0.0
	200	N	0	0	1.0	49	0.1	0.1	0.1	0.1
8	200	I	0	0	1.0	47	0.1	0.1	0.0	0.0
	200	N	7°	0	0.9	43	0.1	0.1	0.05	0.05
8	200	I	7°	0	0.8	41	0.1	0.2	0.1	0.1
	200	N	7°	$\pi/2$	0.9	46	0.1	0.1	0.1	0.1
8	200	I	7°	$\pi/2$	1.0	48	0.1	0.1	0.0	0.0
	200	N	7°	π	1.0	52	0.1	0.1	0.1	0.1
8	200	I	7°	π	1.0	50	0.0	0.0	0.0	0.0
	203	N	0	0	1.0	50	0.0	0.0	0.0	0.0
8	203	I	0	0	1.1	52	0.0	0.0	0.0	0.0
	203	N	7°	0	0.9	45	0.1	0.1	0.0	0.1
8	203	I	7°	0	1.0	46	0.1	0.1	0.1	0.1
	203	N	7°	$\pi/2$	1.0	47	0.0	0.0	0.0	0.0
	203	I	7°	$\pi/2$	1.1	52	0.0	0.0	0.0	0.0
	203	N	7°	π	1.1	54	0.0	0.0	0.0	0.0
	203	I	7°	π	1.0	52	0.1	0.1	0.0	0.0

 $DM + DM \to \nu_{\mu} \nu_{\mu}$

Summary

- In neutrino telescopes such as ICECUBE, the direction of muon-track can be reconstructed by amazing precision of 1 degree which means neutrinos from the Sun can be singled out.
- Measurement of the spectrum of neutrinos is going to be challenging

- Thus, two situations can be considered -
- Spectrum can be reconstructed

Spectrum cannot be reconstructed

If spectrum cannot be reconstructed

$$\Delta \neq 0$$
 A sharp feature should be present in the spectrum of neutrinos

If spectrum can be reconstructed

If the spectrum contains a sharp line, generally we expect Δ to be nonzero

Seasonal Variation

$$\begin{split} \frac{dN_{\mu}(t)}{dt} &= \int |\frac{F^{0}_{\nu_{\alpha}}wP_{\alpha\mu}(t)(\sigma^{CC}_{\nu_{\mu}p}\rho_{p} + \sigma^{CC}_{\nu_{\mu}n}\rho_{n})R_{\mu}A_{eff}(\theta[t])}{[L(t)]^{2}} \; dV \\ &+ \int \frac{F^{0}_{\bar{\nu}_{\alpha}}\bar{w}P_{\bar{\alpha}\bar{\mu}}(t)(\sigma^{CC}_{\bar{\nu}_{\mu}p}\rho_{p} + \sigma^{CC}_{\bar{\nu}_{\mu}n}\rho_{n})R_{\mu}A_{eff}(\theta[t])}{[L(t)]^{2}} \; dV \end{split}$$

$$i\frac{d|\nu_{\gamma}\rangle}{dt} = \left[\frac{m_{\nu}^{\dagger} \cdot m_{\nu}}{2p} + \operatorname{diag}(V_{e}, 0, 0)\right]_{\gamma\sigma}|\nu_{\sigma}\rangle$$

$$i\frac{d|\bar{\nu}_{\gamma}\rangle}{dt} = \left[\frac{m_{\nu}^{T} \cdot m_{\nu}^{*}}{2p} - \operatorname{diag}(V_{e}, 0, 0)\right]_{\gamma\sigma}|\bar{\nu}_{\sigma}\rangle$$

$$V_{e} = \sqrt{2}G_{F}N_{e}.$$

$$V_e = \sqrt{2}G_F N_e$$
.