Anatomy of Table-Level Locks in
PostgreSQL

Gul¢in Yildirim Jelinek, Staff Engineer @ Xata

Jan 2025, PGDay CERN

/\ ’c xata

Select * from me;

Current:

Past:

Staff Engineer at Xata

Postgres Contributor

Co-founder of Prague PostareSQL Meetup

Co-founder & General Coordinator of Kadin Yazilimci (Women Devs Turkey)
Co-founder & Chair of Diva: Dive into Al Conference

Postagres Europe Diversity Committee

Board Member at Postgres Europe

https://xata.io/
https://www.postgresql.org/community/contributors/
https://www.meetup.com/prague-postgresql-meetup
https://x.com/kadinyazilimci
https://2024.divaconf.com/
https://www.postgresql.eu/diversity/diversity_committee/
https://www.postgresql.eu/

Select * from me;

JELINEK

AIDA

VISITOR / VISITEUR

Agenda
01 I\m: 04 Reducing Locking Impact

O 2 DDL Locks 05 pgroll

O 3 Postgres Lock Queue

M xata

Locks

. Concurrency primitive

' Ensures conflicting actions don't happen in parallel

. Used everywhere

Postgres lock avoidance

@ Uses MvCC for DML

Writes make new copy of data

. Reads don't block writes, writes don't block reads

But even reads still lock objects (tables, types, views)

M xata

MVCC example

Transaction 1 (txid: 100)
BEGIN;

SELECT ctid, id, name, salary, xmin, xmax
FROM employees

WHERE id = 1;

- Sees: salary = 50000

SELECT ctid, id, name, salary, xmin, xmax
FROM employees

WHERE id = 1;

- Sees: salary = 50000

SELECT ctid, id, name, salary, xmin, xmax
FROM employees

WHERE id = 1;

- Sees: salary = 60000

COMMIT;

Transaction 2 (txid: 101)

BEGIN;

UPDATE employees
SET salary = 60000
WHERE id = 1;

COMMIT;

Row Versions

(0,1) | 1 | Alice | 50000 | 99 | null

(0,1) | 1 | Alice | 50000 | 99 | null

1) | 1| Alice | 50000 | 99 | null
(0,1) | 1 | Alice | 50000 | 99 | 101

(0,2) | 1 | Alice | 60000 | 101 | null

(0,1) | 1| Alice | 50000 | 99 | 101
(0,2) | 1| Alice | 60000 | 101 | null

(0,1) | 1 | Alice | 50000 | 99 | 101
(0,2) | 1 | Alice | 60000 | 101 | null

(0,1) | 1 | Alice | 50000 | 99 | 101
(0,2) | 1 | Alice | 60000 | 101 | null

(0,1) | 1 | Alice | 50000 | 99 | 101
(0,2) | 1 | Alice | 60000 | 101 | null

M xata

Why we lock

‘ Reduces the throughput

' May increase latency - Loss of performance

. Correctness - Different Isolation Levels

M xata

DDL

Often needs stronger lock modes on objects

Especially things like ALTER TABLE, VACUUM FULL

May block other DDL, DML or even SELECTs accessing same object

Every DDL command (and sometimes sub-command) is different

M xata

Takeaway #1:

MVCC will protect you from writes blocking
reads, but not from object locks taken by
DDL.

Different variants of the same DDL command may need very different lock
strength.

M xata

Table-level lock modes

ACCESS SHARE - SELECTs

ROW SHARE - SELECT FOR UPDATE/SHARE

ROW EXCLUSIVE - DML (INSERT/UPDATE/DELETE/MERGE)

SHARE UPDATE EXCLUSIVE - VACUUM, ANALYZE, CREATE INDEX CONCURRENTLY

SHARE - CREATE INDEX

SHARE ROW EXCLUSIVE - CREATE TRIGGER

EXCLUSIVE - REFRESH MATERIALIZED VIEW CONCURRENTLY

ACCESS EXCLUSIVE - DROP TABLE, TRUNCATE, some forms of ALTER TABLE, VACUUM FULL

n

12

Table-level lock modes

. Different modes conflict with different other modes

. ACCESS EXCLUSIVE conflicts with everything, including ACCESS SHARE (SELECT)

Postgres has many optimizations to take weaker lock modes when it can

. But nothing is perfect, it will still take strong locks on some DDL
. Once a transaction takes a lock, it holds it even when the statement has finished

M xata

Takeaway #2:

DDL may block writes and/or reads for the
whole run time of the transaction.

Don't mix commands that need strong locks with other commands in the
same transaction.

M xata

14

Lock queue

. When requested lock mode conflicts with already acquired lock mode by different
backend, it needs to wait

By default, it waits forever and can stall everything unless you specify lock_timeout

The queue is not visible in pg_locks, use pg_blocking_pids() to see what other
backends blocks a specific backend

¢
. Waiting locks form a lock queue
¢
¢

Locks that are ahead in the queue can block locks that are behind them in the queue

M xata

Takeaway #3:

Use lock_timeout to limit how long
something waits for lock.

Using lock_timeout for DDL commands is often enough. You must be able
to handle failures, for example retry the DDL again.

M xata

16

Lock queue blocking example

Let's reiterate: Locks that are ahead in the queue can block locks that are behind
them in the queue

1.
2.

Long running SELECT holds ACCESS SHARE LOCK
ALTER TABLE DETACH PARTITION needs brief ACCESS EXCLUSIVE LOCK
They conflict so ALTER TABLE is put into lock queue

Another ~30 backends try to do simple primary key lookup SELECTSs

They conflict with the ALTER TABLESs lock, so they are put into the lock queue
behind it

All access to the given table is now queued behind and no processing happens
until the long running SELECT and ALTER TABLE both finish

M xata

Takeaway #4:

Any long-running query can cause
blocking during schema changes.

The cumulative waiting effect can be mitigated by lock_timeout
(remember takeaway #3).

M xata

Multiple ways to achieve the same result #1

Sometimes, there are less impactful ways to do something

e Use CONCURRENTLY commands
o CREATE INDEX CONCURRENTLY
o ALTER TABLE DETACH PARTITION CONCURRENTLY
e They use less locking, however
o They take longer
o Not transactional (can't be in transaction block, can't be rolled back)

o Leave half-done work on failure (there are commands to clean up or finish
the work)

e As aresult: Treat them with care

18

M xata

19

Multiple ways to achieve the same result #2

Some actions can be split

e ALTER TABLE mytable ADD COLUMN newcol NOT NULL DEFAULT clock_timestamp()
o ACCESS EXCLUSIVE lock
o Blocks everything else
o Table rewrite - holds lock for a long time if table is big

e Can be done in steps

o ALTER TABLE mytable ADD COLUMN newcol TYPE timestamptz DEFAULT
clock_timestamp()

o UPDATE TABLE mytable SET newcol = clock_timestamp() WHERE newcol IS NULL

m You actually want to do the update in batches, remember any long running query can cause
problems

o ALTER TABLE mytable ALTER COLUMN newcol SET NOT NULL ¥ xata

20

Multiple ways to achieve the same result #2 continued

Some actions can be split

e ALTER TABLE mytable ALTER COLUMN newcol SET NOT NULL
o Still takes long time and blocks writes
m But does not block reads unlike the original command
e Can be further split into

o ALTER TABLE mytable ADD CONSTRAINT CONSTRAINT
mytable_newcol_not_null CHECK (newcol IS NOT NULL) NOT VALID

o ALTER TABLE mytable VALIDATE CONSTRAINT mytable_newcol_not_null
o This way the scan during VALIDATE CONSTRAINT does not block writes

M xata

21

Takeaway #5:

Try to find an approach that does less
locking.

Postgres manual contains all the CONCURRENTLY commands.

Splitting actions takes expertise and some things are impossible (or very
hard) to do without heavy locking from plain SQL.

M xata

22

Postgres improves over time

Let's look at slightly modified example from before
e ALTER TABLE mytable ADD COLUMN newcol int NOT NULL DEFAULT 1
e Still takes ACCESS EXCLUSIVE lock
o Blocks everything else
e Does not rewrite table because 1is constant and can be stored as metadata
o Locks for very short time

e This used to rewrite in the old versions of Postgres just like the previous
example

M xata

23

Takeaway #6:

Make sure you are running the newest
version of Postgres.

Improvements in locking and even how long the command takes (and
holds the lock) happens in newer versions.

New CONCURRENTLY command variants are added in newer versions.

M xata

24

Enter pgroll

Zero-downtime, reversible schema
changes for Postgres

M xata

25

Motivation

(Some) Postgres schema changes are difficult

e Locking issues (most ALTER statements take the ACCESS EXCLUSIVE lock)

e Data backfill (e.g. add a column with unique constraints)

e Require multiple steps (e.g renaming a column)

e Backwards incompatible with old or new versions of the application (e.g. dropping a

column)

M xata

26

How does pgroll work?

M xata

27

How does pgroll work?

e Higher level operations
e Automatic Expand/Contract pattern

e Multi-version schema views

M xata

28

Higher level operations

Instead of ALTER statements, pgroll uses higher level operations:

o Add column {
"name": "18_change_column_type",
o Rename column e e
{
0
Change type of column R
o) Add indeX "table": "reviews",
"column": "rating",
o Add constraint “type": "integer",
"up": "CAST(rating AS integer)",
Etc. "down": "CAST(rating AS text)"
¥
Backfilling of data is represented in the JSON }
1
I

29

Automated Expand and Contract pattern

e Temporary columns are added to the physical table
e Data is backfilled and transformed in background
e Views hide or show the different columns

e Temporary columns are deleted when no longer needed

M xata

30

Multiple-schema versions via views

Workflow is always the same:

[deo Vi J e Start migration

"""""""""" e Do a (rolling) upgrade of

Y and va lve

L mbtancously your application
[j e Finalize the migration
App v
___ >
time

https://xata.io/blog/multi-version-schema-migrations
¥ xata

31

Different version of the schema are exposed via views

.~ e s s e s s s e e e S s S o =
| . e Temporary columns are
. old version view % Migration operations 0
p added to the physical
SoLs « Rename column fullname -> firstname
T e « Add column lastname ta ble
: « Applya NOT NULL constraintto age column
fullname = e------- /4 .
N | e Data is backfilled and
age b physical schema transformed in
Users
. , background
b e >| id text
‘ I EEE R oo > fullname text . .
' new version view - ; e \iews hide or show the
| users e)| age e different columns
id . T > | _pgroll_new_age_notnull float
firstname . :'”” _pgroll_new_lastname text
lastname .
age D R

32

How - Application selects its version by setting the ‘search_path’

SET search_path TO mig_cq778qtluBoeBbpredlO;

INSERT INTO users(name) VALUES (NULL)

SET search_path TO mig_cq778jdluBoeBbpredk0;
INSERT INTO users(name) VALUES (NULL)

SELECT * FROM users ORDER BY name DESC;

33

How - automatic backfilling

{
e The "up” SQL expression is used to convert or “name": "18_change_column_type",
generate the required data "operations": [
{
e You can control the batch size and rate "alter_column": {
"table": "reviews",
"column": "rating",
"type'": "integer",
"up": "CAST(rating AS integer)",
"down": "“CAST(rating AS text)"
}
}
|
}

34

How - triggers update and downgrade data in both directions

What about new writes to the table?

{
"name": "18_change_column_type",
e Triggers are installed to convert the data “up” and "°ze“"ti°“s"= :
7} n
down "alter_column": {
) . "table": "reviews",
Note: dual write at the column level is necessary here, but "column”: "rating",

you'd have to do it anyway. “type": "integer",

"up": "CAST(rating AS integer)",
"down": "CAST(rating AS text)"

35

The “trylock” trick is built-in

e Generated ALTER is prefixed with a SET
lock_timeout command

SELECT +, pg_sleep(30) FROM users]

e Avoids issues with the lock queue [}

ADD COLUMN age INTEGER

[SELECT + FROM users J EMSER’\’ INTO users(name) VALUES ('Do‘naﬂ

D requires an ACCESS SHARE lock
D reauires o ROW EXCLUSIVE lock

D requires an ACCESS EXCLUSIVE lock

Benefits

e Rollback is easy - just drop the views and intermediary columns.

e The tool takes care of locking issues and common issues.

e The merging workflow is always the same:
o Start the pgroll migration
o Roll-out the application upgrade (can be blue-green)

o Complete the pgroll migration

36

37

Final Takeway:

Smart tools like pgroll can help you avoid
many common pitfalls.

Zero-downtime, reversible schema changes are possible.

M xata

For more

Anatomy of Table-Level Locks in
PostgreSQL
By Gulcin Yildirim Jelinek £ Jan 13,2025

This blog explains locking mechanisms in
PostgreSQL, focusing on table-level locks that are
required by Data Definition Language (DDL)
operations.

38

https://github.com/xataio/pgroll
https://pgroll.com/blog

] @D ANTIMATTER
FACTOR -

Evolution
of Fault Tol

=NA

erance

in PostgreSQL

5T —

