

Physics Potential of an Alternative Gamma-Gamma Collider Mode

Gudrid Moortgat-Pick, Ariel Schwartzman

CERN Linear Collider Vision Community Event 2025 CERN 08-Jan-2025

Introduction

High energy photons collisions ($\gamma\gamma$ and $e^{-\gamma}$) offer a complementary physics program to e^+e^- :

e.g. Tesla TDR, Part VI, JLC 1998,...

- The Higgs boson is produced in the s channel
 - The electron beam energy is lower than what is required in e+e- collisions (65-80 GeV vs 125 GeV)
 - At higher center of mass energies, all phase space is available for producing the Higgs boson → higher mass reach for heavy Higgs bosons than e⁺e⁻ at the same center of mass energy
 - **yy** can directly couple to spin-0 resonances whereas e+e- require the production of another spin-1 particle
 - complementary probe of the scalar sector
- Polarization of both electrons and photons
 - Allows for a rich study of CP violation in the scalar sector

e⁺e⁻ / γγ Complementarity^{^{νοκογα}}

- yy collisions can produce **heavy Higgs bosons** with masses >1.5 times higher than e⁺e⁻: $\circ e^+e^- \rightarrow HA vs. yy \rightarrow H, yy \rightarrow A$
- e⁻⁻γ collisions can produce charged particles with masses higher than pair-production in e⁺e⁻:

 $\circ \quad e^{-\gamma} \to \sim e^{-1} \Box^{0}$

Kanemura 2001, Nauenberg 2001,

- Since yy→H is a loop-induced process, it can probe new physics contributions to the Higgs photon coupling: sensitive to BSM particles in loops
- Ability to control the photon polarizations provides a powerful tool for the exploration of CP properties of any single neutral Higgs boson
 - The J =0 vv initial state can form a CP-even or a CP-odd state using linear polarizations of the laser beams
 - CP-even Higgs bosons (h⁰, H⁰) couple to linearly polarized photons with ^{2020, 2023} maximum strength for parallel polarisation vectors
 - CP-odd Higgs boson (Å⁰) couple to linearly polarized photons with perpendicular polarization vectors

Photon Collider Mode

For increasing values of x the high energy photon spectrum becomes more peaked towards maximum energies. The value $x \approx 4.8$ has been the choice for previous optical photon collider concepts 4

Photon Collider Concepts

- Optical photon colliders concepts developed in the 2000's can produce similar number of Higgs bosons per year than e⁺e⁻, but with higher backgrounds
- Recent innovation in photon science, particularly in XFELs can lead to enhanced capabilities
 CLICHE
 SAPPHIRE

TESLA

The Superconducting Electron Positron Linear Collider with an Integrated X-Ray Laser Laboratory

Technical Design Report

Part VI: Appendices Chapter 1: Photon Collider at TESLA

DESY-2001-011, ECFA-2001-209 TESLA-2001-23, TESLA-FEL-2001-05

Physics Opportunities

e.a. Tesla TDR. Part VI

- Jikia, 1994, Bharucha et al, 2021,
- Di-Higgs production and measurement of trilinear couplings
- Enhanced production cross sections of any charged particles by factor of ~10 compared to e⁺e⁻ (e.g. SUSY, etc.) Mühlleitner 2006. Kanemura 2001
- $e^{-}y$ -options extends kinematic reach for charged particles (BSM, SUSY, heavy Higgs, etc.)
- Access to hadronic and electromagnetic structure of photons via photon-photon and photon-electron scattering
- Access to precise measurement of the two-photon decay width of the Higgs boson due to the higher rates which is particularly sensitive to new heavy charged particles beyond the kinematic range
- Spectroscopy of C-even resonances (e.g. in multi-quark states, Telnov et al., 2023 glueballs)

X-ray FEL based Photon Collider

Di-Higgs Production

 $\gamma\gamma \rightarrow$ HH cross section at 380 GeV centre of mass energy is almost double that of e⁺e⁻ at 500 GeV, with a simpler hadronic final state (4 jets)

Initiated an effort to update physics case of a Photon Collider mode at 126 GeV and 380 GeV centre of mass energies

> Data sets were produced utilizing Pythia8 and Cain $\sqrt{\hat{s}}$ spectra: $\gamma\gamma \rightarrow HH$ $\gamma\gamma \rightarrow qq$ $\gamma\gamma \rightarrow tt$ $\gamma\gamma \rightarrow ZZ$ $\gamma\gamma \rightarrow W^+W^-$ Cain (x1,x2) spectra is now interfaced to Whizard 3.14. Background data sets such as the following are being produced:

 $e^{-}\gamma \rightarrow vW \qquad e^{-}\gamma \rightarrow vq\bar{q}W \qquad e^{-}\gamma \rightarrow e^{-}q\bar{q}W$ $e^{-}\gamma \rightarrow e^{-}Z \qquad e^{-}\gamma \rightarrow vq\bar{q}Z \qquad e^{-}\gamma \rightarrow e^{-}q\bar{q}Z$ $e^{-}\gamma \rightarrow e^{-}H \qquad e^{-}\gamma \rightarrow vq\bar{q}H \qquad e^{-}\gamma \rightarrow e^{-}q\bar{q}H$

Di-Higgs Production

- Complementary to e⁺e⁻
- Depends on total angular momentum J₂
- Trilinear coupling only for $J_{7}=0$

• Choice of laser photon helicity to maximise $J_z = 0$ in the luminosity distribution

Delphes Event Displays

Di-Higgs at 380 GeV

Several BDTs trained to separate signal from various backgrounds. No kinematic fit yet

Pileup mostly forward: can be suppressed using constituent subtraction techniques before jet clustering. Studies ongoing

Kinematic fit being implemented. Aim at full comparison with e⁺e⁻ at 550 GeV

Next steps/Outlook

e.g. with CAIN, Yokoya

- Update simulation studies for single and double Higgs using various laser configurations
- Include studies of polarization in simulations
- More precise studies on light-by-light for different energy stages
- Ellis et al. Allows direct access to light-by-light scattering, i.e. a new 2024 plethora of 'old' and 'new' physics as Born-Infeld, constraints Ginzburg et al. for non-linear extensions of QED, dark matter candidates, ALPS etc. ...
 - Evaluation photon-photon IP region challenges
 - crossing angle, ...

1984

Summary

- The addition of yy and ey collision modes to a e⁺e⁻ linear collider program can provide complementary physics capabilities, driven by s-channel Higgs production and polarization, enabling CP violation measurements, higher mass reach for BSM Higgs, and Di-Higgs measurements at 380 GeV
- XFELs provide new opportunities to enhance the physics²⁰²² capabilities of a photon-photon collider mode. Need R&D to address technical challenges and prototypes, e.g. EuroXFEL²⁰²⁰₂₀₂₃
- The next first step is to update the photon collider physics CAIN, Case using new simulations

Reaction	Remarks
$\gamma\gamma ightarrow h^0 ightarrow bar{b}$	SM (or MSSM) Higgs, $M_{h^0} < 160 {\rm GeV}$
$\gamma\gamma \to h^0 \to WW(WW^*)$	SM Higgs, $140 \text{GeV} < M_{h^0} < 190 \text{GeV}$
$\gamma\gamma \to h^0 \to ZZ(ZZ^*)$	SM Higgs, $180 { m GeV} < M_{h^0} < 350 { m GeV}$
$\gamma\gamma ightarrow H, A ightarrow bar{b}$	MSSM heavy Higgs, for intermediate $\tan \beta$
$\gamma\gamma ightarrow { ilde f} { ilde f} { ilde f}, \; { ilde \chi}^+_i { ilde \chi}^i, \; H^+ H^-$	large cross sections, possible observations of FCNC
$\gamma\gamma \to S[\tilde{t}\bar{t}]$	$ ilde{t}\overline{ ilde{t}}$ stoponium
$\gamma e ightarrow ilde{e}^- ilde{\chi}^0_1$	$M_{ ilde{e}^-} < 0.9 imes 2E_0 - M_{ ilde{\chi}_1^0}$
$\gamma\gamma ightarrow W^+W^-$	anomalous W interactions, extra dimensions
$\gamma e^- \to W^- \nu_e$	anomalous W couplings
$\gamma\gamma \rightarrow WWWW, WWZZ$	strong WW scatt., quartic anomalous W, Z couplings
$\gamma\gamma \to t\bar{t}$	anomalous top quark interactions
$\gamma e^- \rightarrow \bar{t} b \nu_e$	anomalous Wtb coupling
$\gamma\gamma \rightarrow \text{hadrons}$	total $\gamma\gamma$ cross section
$\gamma e^- \to e^- X$ and $\nu_e X$	\mathcal{NC} and \mathcal{CC} structure functions (polarised and unpolarised)
$\gamma g ightarrow q ar q, \ c ar c$	gluon distribution in the photon
$\gamma\gamma ightarrow J/\psiJ/\psi$	QCD Pomeron

CP-Comparison $e^+e^- vs \gamma\gamma$

- Higgs boson production
 - o e⁺e⁻-collider via Higgsstrahlung (250 GeV)
 - γγ-collider via top-loop and W-boson-loop (125 GeV)

- Single resonance hadron production at e⁺e⁻-collider for J^{PC}=1⁻⁻
- $\gamma\gamma$ -collider allows for C = + states with (even J)⁻ and J⁺ apart from J = 1
- J_z= 0, 2 is chosen via laser photon helicity

[V. I. Telnov]

left-handed electrons

laser photon helicity opposite (top) same (bottom)