ILC Upgrade with Energy Recovery (ERLC)

LC Vision Community Event 2025 2025.1.9

Two Concepts

- Linear colliders with energy recovery potentially reach luminosities 2 orders of magnitude higher than
- 2 different concepts of linear collider with energy recovery
- A) After IP, the beams are decelerated and stored in damping rings until the beam properties (emittance, energy spread, etc) are restored. Then, accelerated again.
 → examples: ReLiC, CLERC

 - → Vladimir
- B) After IP, the beams are decelerated and weakly damped by wigglers (single pass). Then, accelerated again. \rightarrow examples: ERLC, Ghost Collider
- Each of these has pros and cons
- The question which is better is too early to ask

ERLC

- Proposed by V. Telnov. JINST 16(2021)P12025.
- Latest version : arXiv2302.09758v3 (Dec.2024)

- Constraints
 - ✓Energy loss by beamstrahlung. Low energy tail of electrons must be captured in the return beamline
 - ✓Energy spread due to multiple beamstrahlung
 - ✓Beam-beam tune-shift limit $ξ_{x,y} < ~0.1$

Twin-Axis Cavity

- Accelerating beam and decelerating beam travel along opposite direction
- Twin-axis cavity is needed for energy recovery (avoid beam encounter in the cavities)
 For example →
- Disadvantage (compared with a single-cavity case): RF loss is doubled
- Application of HELEN idea (TW:traveling wave) may be a cure
 - Can potentially give a higher accelerating gradient

TW Twin-Axis Cavity \rightarrow

Luminosity Upgrade of ILC

- ERLC was originally proposed as an independent project
- If adopted as an upgrade of ILC, there are several additional constraints
 - Tunnel cross-section to accommodate twin-axis cavity
 - ✓Crossing angle, layout
 - Small crossing angle (~2mrad) is better
 - If 14 mrad, must construct a return line after IP (issue is the emittance increase and energy loss by synchrotron radiation)
 - LCF@CERN can be different in this respect
 - ✓Tunnel length
 - Ideally, XX GeV ILC tunnel can accommodate XX GeV ERLC

Parameter Optimization

- Condition on the beamstrahlung and beambeam tune shift
 - ✓ Small bunch charge
 - ✓ High beam current
- Major sources of power consumption
 - a. Cooling of the RF heat
 - b. Cooling of the HOM power
- Accelerating gradient
 - ✓(a) prop. G, (b) propt. 1/G
 - ✓There is a power optimum
 - ✓ but we choose a higher G for shorter tunnel
- Table in the next page assumes most optimistic case
 - ✓TW type twin-axis cavity
 - ✓4.5K operation with Nb3Tn

preliminary parameters

		~ · · · ·		
	ILC	ERLC	ERLC	
Center-of-mass energy	250	250	500	GeV
Accelerating gradient	31.5	40	40	MV/m
Cavity Q_0	1	3	3	$\times 10^{10}$
Aperture radius	35	35	35	mm
Shunt impedance per unit length	996	1690	1690	Ohm/m
Operating temperature	2	4.5	4.5	Κ
Bunch population	2	0.075	0.081	$\times 10^{10}$
Bunch distance	166	0.23	0.23	m
Average beam current	0.021	157	169	mA
Beam energy in the return line		5	5	${ m GeV}$
Total HOM power	0.014	2.9	5.85	MW
Energy acceptance of the return line		3	3	%
Radiation loss in the wiggler		25	25	MeV
Bunch length in main linac and IP	0.3	0.31	0.89	mm
Normalized emittance at IP (x/y)	5/35	10/35	10/35	$\mu { m m}$ / ${ m nm}$
Beta function at $IP(x/y)$	13/0.41	12/0.31	40/0.89	mm
Beam size at $IP(x/y)$	515/7.66	700/6.2	900/7.4	nm
Disruption parameter (x/y)	0.5/34.5	0.011/1.14	0.010/1.14	
Beam-beam tune shift (x/y)		0.033/0.097	0.036/0.098	
Upsilon (max)	0.068	0.00182	0.00106	
Luminosity	1.35	135	102	$10^{34}/{\rm cm^2/s}$
AC power for RF heat cooling	5	91	181	MW
AC power for HOM cooling	1	35	71	MW
Total site power	111	170	320	MW

Required R&D

- Cavity material
 - ✓ Nb3Tn desired. Operation at 4.5K.
- High efficiency cryogenics system
- Cavity type
 - \checkmark Twin-axis cavity is mandatory
 - ✓ TW-type desired
 - HELEN cavity is the first step
 - Complex cavity design (trapped modes, transverse deflection modes, etc)
 - $\checkmark\,$ Surface polishing method, tuning of twin cavities
- HOM absorber
 - ✓ Common to ERL for light sources
- Beamline issues
 - $\checkmark\,$ BBU in the main linac
 - ✓ Emittance increase by synchrotron radiation in various places
 - Emittance increase in main linac (the design emittance is the same as ILC but multiple pass)
 - ✓ Background in BDS (average beam current is 4 orders higher than in ILC)
 - ✓ Design of IR region
- How many years?
 - ✓ Hard to answer. More than 20 years?