

Pre-alignment voluntarily displacement

Vivien RUDE, Vincent BARBARROUX Patrick BESTMANN

2024-10-02

INPUT

<u>Safety layers constraints :</u>

After the interconnections, the bellows can accept :

• 1 mm of translation

• 1 mrad of torsion

- Range :
 - FRAS range : +/- 2.5 mm
 - Jack range : +/10 mm
 - Baseline : When the interconnection is complete, the jacks should be positioned within the mid-range

Mechanical Coordinate system

- > Primary axis : Y : Regression line corresponding to the mechanical cold bore axis (determined from mechanical mole)
- Secondary axis : Z : Normal vector of the plane [Conn-D9, Conn-D10, NConn-D9, NConn-D10]
- > Origin : Projection of the central cold feet on Y axis

Delta Mechanical and Magnetic (axis and magnetic field)

Q3 #01

Side view

This rotation also occurs between the end cover and the magnetic axis. All the auxiliary lines are installed with respect to the Z-axis.

Delta Mechanical and Magnetic (Constant at warm and at cold)

Example : Q2#P3 in vertical

Mechancial or magnetic axis ?

floor

For cold element	R-vacuum vessel = R-mechanical axis (warm)		R-mechanical axis (cold)		R-magnetic axis (at cold)		R-rst	
Tx (radial)		FSI or $Tx = 0$		Tx =		Tx = 0		
Ty (longitudinal)		FSI or Ty = 0		Ty = 0		Ty =		
Tz (vertical)		FSI or Tz = -1.5 mm		Tz =		Tz = 0		
Rx (pitch)		FSI or $Rx = 0$		Rx =		Rx = 0		
Ry (roll)		FSI or $Ry = 0$		Ry =		Ry	= 0	
Rz (Yaw)	FSI or Rz =		Rz = 0	Rz =		Rz = 0 or 180 °		
Scale		FSI or S	cale =	Scale	e = 1	Scal	e = 1	
HILUMI		ESI or	↓ Constant	Co	↓ nstant	Co	↓ nstant	Vivien RUDE

Open discussion

- Before the interconnection phase, the elements should be installed in their nominal positions
- The **longitudinal shift** from Mad-X (R-rst) to the fixed cold foot of each component should be implemented
- The warm-cold delta should be taken into account prior to interconnection.
- The **mechanical-magnetic delta** should be taken into account prior to interconnection.
- The **direction of magnetic field** should be taken into account prior to interconnection.
- \rightarrow How to manage the deltas ?
 - → By longitudinal shift → Longitudinal shift from R-magnetic axis at cold to Rrst
 - \rightarrow By vertical shift \rightarrow Warm-cold delta (anticipation) \rightarrow Be careful not to apply it twice (shift + FSI)
 - \rightarrow By bump : Three bumps exist :
 - → Bump : Beam Base alignment
 - → Bump : Optimization displacements (aperture) → mechanical-magnetic delta (MAB validation)
 - → Bump : Mechanical constraints

This implementation is not yet done on geode \rightarrow On going

→ String Test ?
→ 100% magnetic ?

Thank you for your attention

