Results from e-cloud MDs: Negative octupole polarity at injection and 1000 bunches with 2.3e11 ppb

> Konstantinos Paraschou, Lotta Mether, Giovanni Rumolo, Benoit Salvant

> > HL-LHC WP2 Meeting 4<sup>th</sup> November 2024

## **MDs** Overview



Heat-load at injection Short fills (trains of 2x48b) at: 1. 2.3 10<sup>11</sup> p/b (972 bunches) 2. 1.9 10<sup>11</sup> p/b (1164 bunches) 3. 1.5 10<sup>11</sup> p/b (1548 bunches) 4. 1.1 10<sup>11</sup> p/b (2124 bunches)

#### Negative octupole polarity

Find optimal tune and stability threshold with:

- 1. Negative oct. polarity
- 2. Positive oct. polarity and
- 3. Test LHC filling with negative octupole polarity

## Heat load



- High heat-load sectors (78, 81, 12, 23) show a trend that is increasing with bunch intensity.
- Medium heat-load sectors (56, 67) have lower heat load at 2.3 10<sup>11</sup> p/b compared to 1.8 10<sup>11</sup> p/b.
- Low heat-load sectors (34, 45) are rather constant at low heat loads (also larger uncertainty due to low absolute heat-load)



## Pressure in VGPB.222.1L5.X.PR



Stronger than usual outgassing was observed left and right of IP5 in common chambers (VGPB.222.1L5.X.PR, VGPB.222.1R5.X.PR).

- Small pressure spikes followed by
- inrease of dynamic pressure, significantly delayed with respect to the injection of bunches.
- Dynamic pressure remained in later fills even with lower bunch intensities

#### Pressure in VGPB.222.1L5.X.PR



Small spikes during:

- 1. Small spikes during MD with  $1.8 \ 10^{11}$  p/b at top energy (in 2022),
- 2. Tiny spikes during MD with 2.3 10<sup>11</sup> p/b at injection (350 bunches)
- 3. Larger spikes and dyn. pressure during MD with 2.3 10<sup>11</sup> p/b at injection (972 bunches)
- 4. Small dyn. pressure rise during latest LHC fills in 2024.
- 5. Larger dynamic pressure rise has not re-appeared in the 2024 pp reference run.

## Pressure in VGPB.1175.5R4.R.PR



Location in cell 5R4, B2 show large pressure spikes (~10<sup>-6</sup> mbar) during all MDs and frequently during LHC fillings.

# Summary (1/2)

#### Heat load MD – experience with 2.3 10<sup>11</sup> p/b:

- Very succesful MD, no major issues encountered.
- Heat load data confirm qualitative behaviours expected from e-cloud simulations. To be compared quantitatively in more detail.
- Suspicious behaviour of pressure spikes and dynamic pressure rise in the common beam chambers left and right of IP5:
  - Has not re-appeared in the pp reference run. Unlikely to have caused damage.
  - Possibly related to high bunch intensity + large number of bunches.
  - Possibly related to event during MD block, where loss of communication caused all vacuum valves to close around IP5.
- Pressure spikes in 5R4 B2. Is being followed up.

## **MDs** Overview



# Negative octupole polarity

- 12 bunches
- Smaller scan repeated around optimal tune after injecting trains
- Optimal tune with trains was always equal to optimal tune with 12 bunches.



• Process was repeated with positive octupole polarity to find that current tune (0.275/0.293) is optimal.

# Lifetime comparing negative and positive octupole polarity

Scanning octupole current (starting from  $|I_{MO}| \sim 50$  amps down to 0)



• Lifetime with positive octupole polarity is almost always much better.

## Negative octupole polarity – octupole scan



#### Positive octupole polarity – octupole scan Violent instabilities (knob = 0)HORIZONTAL EMITTANCE HORIZONTAL EMITTANCE VERTICAL EMITTANCE VERTICAL EMITTANCE ultan 1.5-30 $\triangleleft$ And bigger (knob = -0.3) 20 HORIZONTAL EMITTANCE HORIZONTAL EMITTANCE 10 Lifetime started 17000 8000 14000 15000 16000 18000 dropping (knob = -1.8) VERTICAL EMITTANCE VERTICAL EMITTANCE -10 20.10 - 6:30:00 6:50:00 7:10:00 7:20:00 uittau 1.5-6:40:00 7:00:00 7:30:00 Timestamp (Local time 15000 16000 17000 14000 Mini instabilities (knob = -1.2) Bigger instabilities (knob = -0.9) HORIZONTAL EMITTANCE HORIZONTAL EMITTANCE HORIZONTAL EMITTANCE HORIZONTAL EMITTANCE Emittance ti 2-18000 1000 2000 3000 4000 5000 6000 7000 14000 15000 16000 17000 19000 20000 Bunch Bunch 14000 17000 Bunch VERTICAL EMITTANCE VERTICAL EMITTANCE VERTICAL EMITTANCE VERTICAL EMITTANCE 2.5 25 e 2-1.5-1-2 Emittance 1.5 17000 18000 5000 14000 15000 16000 1000 2000 7000 16000 3000 4000 6000 14000 15000 17000 18000 19000 Bunch Bunch 12

# Test injection fill with negative octupole polarity

Operational octupole settings were: B1 knob: -4.2 B2 knob: -3.5 Tunes at 62.275/60.293

# Different from threshold that was found.

Possibly due to injection process being:

• With constant injections

Tested with octupole settings:

- Magnetic decays changing coupling and chromaticity
- Scrubbing?

B1 knob: 3.2







## Summary

#### Heat load MD – experience with 2.3 10<sup>11</sup> p/b:

- Very succesful MD, no major issues encountered.
- Heat load data confirm qualitative behaviours expected from e-cloud simulations. To be compared quantitatively in more detail.
- Suspicious behaviour of pressure spikes and dynamic pressure rise in the common beam chambers left and right of IP5:
  - Has not re-appeared in the pp reference run. Unlikely to have caused damage.
  - Possibly related to high bunch intensity + large number of bunches.
  - Possibly related to event during MD block, where loss of communication caused all vacuum valves to close around IP5.
- Pressure spikes in 5R4 B2. Is being followed up.

#### **Negative octupole polarity at injection energy**:

- Optimal tune was found with negative octupole polarity: 62.295/60.313
- Instabilities appear at lower strength of octupoles with negative polarity.
- Lifetime is worse with negative octupoles compared to positive octupoles but still acceptable (> 100h).
- LHC can run comfortably with negative octupole polarity at injection energy.

Thank you for your attention! Konstantinos Paraschou

