

Higgs/Top Performance meeting

Jan Eysermans (MIT), Andrew Mehta (Liverpool), Xunwu Zuo (KIT)

November 12, 2024

News

Feasibility Study Report (FSR)

- First draft to be ready by the end of the year (for the SPC)
- Internal noted to be submitted to CDS by **Nov 18** for reviews
 - Keep us posted of your plan/status

Procedure for submission

- CDS community https://repository.cern/communities/fcc-ped-sub/
 "new upload"
- Visibility: "full record -> public", "files only" -> restricted
- Already have DOI? -> Get a new DOI
- Awards/Grants -> FCCIS Future Circular Collider Innovation Study
- Submit for review (PED conveners will accept and make public)

Table 3. From Ref. [4]: Relative uncertainty (in %) on $\sigma_{\rm ZH} \times \mathcal{B}({\rm H} \to {\rm X}\overline{\rm X})$ and $\sigma_{\nu_e \bar{\nu}_e {\rm H}} \times \mathcal{B}({\rm H} \to {\rm X}\overline{\rm X})$, as expected from the FCC-ee data at 240 and 365 GeV.

\sqrt{s}	240	GeV	365	GeV
Integrated luminosity	$10.8{\rm ab}^{-1}$		$3.0{\rm ab}^{-1}$	
Channel	ZH	$ u_{ m e}ar{ u}_{ m e}$ H	ZH	$ u_{ m e}ar{ u}_{ m e}$ H
$H \rightarrow any$	± 0.36		± 0.6	
${ m H} ightarrow { m b}ar{ m b}$	± 0.20	± 2.1	± 0.35	± 0.6
$\mathrm{H} ightarrow \mathrm{c} \mathrm{ar{c}}$	± 1.5	?	± 4.4	± 7.1
$\mathrm{H} ightarrow \mathrm{gg}$	± 1.3	?	± 2.5	± 3.2
$H \rightarrow W^+W^-$	±0.8	?	± 1.8	± 2.1
$\mathrm{H} ightarrow \mathrm{ZZ}$	± 3.0	?	± 8.5	± 7.1
$H \to \tau^+ \tau^-$	±0.6	?	± 1.3	± 5.7
${ m H} ightarrow \gamma \gamma$	± 6.1	?	± 13	± 16
$\mathrm{H} ightarrow \mathrm{Z} \gamma$??	??	??	??
$\mathrm{H} ightarrow \mu^+ \mu^-$	±13	?	± 28	
$H \rightarrow invisible$	< 0.2	?	< 0.4	

Conferences and Events

Next Higgs/Top meeting 19 November, zoom only

- https://indico.cern.ch/event/1474959/

FCC physics workshop, 13-17 Jan, CERN

- https://indico.cern.ch/event/1439509/
- We will call for contributions

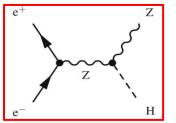
Agenda for today

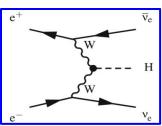
14:00 → 14:10	News Speakers: Andrew Mehta (University of Liverpool (GB)), Jan Eysermans (Massachusetts Inst. of Technology (US)), Xunwu Zuo (KIT - Karlsruhe Institute of Technology (DE))	O 10m	€ •
14:10 → 14:30	Htautau Speakers: Sofia Giappichini (KIT - Karlsruhe Institute of Technology (DE)), Xunwu Zuo (KIT - Karlsruhe Institute of Technology (DE))	○ 20m	€ ▼
14:30 → 14:50	Top threshold scan Speakers: Ankita Mehta (CERN), Matteo Defranchis (CERN)	③ 20m	€ *
14:50 → 15:10	Exotic top decays at FCC Speakers: Barbara Mele, Dibyashree Sengupta, Gennaro Corcella (INFN - LNF)	③ 20m	€ •
15:10 → 15:30	Constraining CP-violating contributions in the Higgs-strahlung process at FCC-e Speakers: Andrei Gritsan (Johns Hopkins University (US)), Lucas Mandacaru Guerra (Johns Hopkins University (US)), Nicholas Pinto (Johns Hopkins University (US)), Valdis Slokenbergs (Texas Tech University (US))	© 20m University	€ •
15:30 → 15:50	H->ZZ* Speakers: Ines Combes (Université Paris-Saclay (FR)), Marco Delmastro (CNRS/IN2P3 LAPP), Nicolas Morange (Université Paris-Saclay (FR)) higgs_width_combe	③ 20m	∠ •

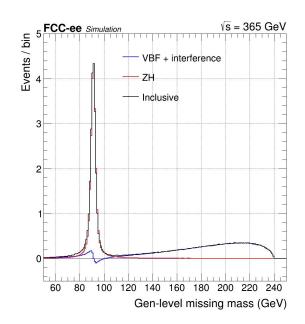
Backup

Splitting production mechanisms at 365 GeV

At 365 GeV center-of-mass, significant contribution from VBF vvH

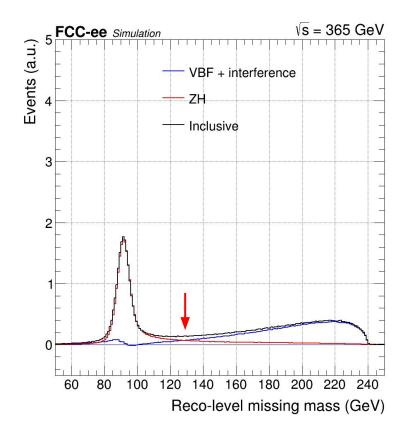

- This interferes with the ZH process where Z→vv
- The samples (e.g. wzp6_ee_nunuH_Hbb_ecm365) we have are inclusive:
 - Contains ZH + VBF + interference
- For cross-section analyses and couplings, need to split the production mode


Recipe to split the production mode


- **For ZH:** use muon neutrino sample with weight 3
- **For VBF:** use (veveH vmuvmuH)
 - Contains the pure VBF component + interference

All splitted samples have been produced

- Inclusive: wzp6_ee_nunuH_HXX_ecm365
- Muon neutrino: wzp6 ee numunumuH HXX ecm365
- **Electron neutrino**: wzp6_ee_nuenueH_HXX_ecm365



Splitting production mechanisms at 365 GeV

One can select more pure regions for both production modes for further background suppression

- Cut or categorize the events by using a cut on the missing mass at 130 GeV
- Nevertheless, both production processes have to be taken into account separately

Where are we today?

Made a lot of progress over the past years, mainly focused at the 240 GeV threshold, but effort at 365 has started

Missing elements for the Feasibility Study

- Higgs @ 240 GeV: WW, ZZ, tautau (expansion of H width efforts)
 - Work started on tautau and Z(jj)H(4l)
 - See updates today
- Higgs @ 365 GeV
 - Use the tagger trained at 240 GeV
 - (ZH, vvH)→bb (width), ZH→ WW

Parameter	FCC-ee CDR	FCCee today
H→WW	1 %	2.0 %
H→ZZ	3.6 %	4.6 %
H→gg	1.6 %	0.94 %
Н→γγ	7.5 %	3.5 %
Н→сс	1.8 %	1.92 %
H→bb	0.25 %	0.22 %
H→µµ	15.8 %	19.5 %
$H \rightarrow \tau \tau$	0.75 %	0.9%
H→Zγ		
H→ss	-	124 %
Invisible	< 0.25 %	< 0.18 %
m _H	5 MeV	4 MeV
Гн	1 %	4%
$\kappa_{_{\lambda}}$	42 %	30%

Conferences and Events

Procedure for conferences

In general, contact us (conveners) in case you would like to present material at a conference

- All abstracts have to be approved by the Higgs/Top conveners and then conference committee
- After approval, the author is responsible for abstract submission to the conference
- Abstracts should be registered in the conf. database: https://fcc-ee-conference.web.cern.ch/

Sample production

Produced large batch of samples at 365 GeV for Top/Higgs studies – thanks Louis Portales!

Samples are here: https://fcc-physics-events.web.cern.ch/fcc-physics-events/FCCee/winter2023/Delphesevents_IDEA.php

Higgs samples

- All samples produced Z(XX)H(YY) with Whizard @365
- wzp6_ee_mumuH_ecm365 produced with identical seed → being reproduced now
- FCNC Whizard cards debugged but to be produced centrally

- Top samples

- WbWb split in hadronic, semileptonic, and leptonic (Whizard)
- Center-of-mass energies 345, 350, 355 and 365 GeV

- Background samples

- WW/ZZ Pythia
- Z/γ with Whizard also Pythia under production to have same generator as 240 GeV (p8_ee_Zqq_ecm365)
- Rares

Let us know if you need additional samples