

$H \rightarrow \tau \tau$ MEASUREMENTS AT FCC-ee IN THE ZH CHANNEL AT 240 GeV

Sofia Giappichini, Markus Klute, Matteo Presilla, Aaron Wiedl, Xunwu Zuo

Higgs/top performance meeting Nov. 12th, 2024

Targets and news

- \blacksquare H o au au cross-section relative uncertainty at $\sqrt{s} = 240$ GeV at FCC-ee
 - → already presented, updates in this presentation
 - **Explicit tau reconstruction** (from Maria Cepeda):
 - Found an issue with the cosine of the angle between the two taus
 - Updated the analysis consequently
 - ML-based tau reconstruction (FCC PNet jet tagger):
 - Parallel analysis to see which reconstruction would work better
 - Redefined some cuts and retrained BDTs consequently
- CP violation in the same channel → not yet begun

General workflow

- We use the **inclusive generalized kt algorithm** for all jets with R=0.5 and $p_{T,j} > 2$ GeV, excluding isolated electrons and muons ($p_T > 20$ GeV and iso<0.25)
- We define **nine categories** based on the Z and tau decays

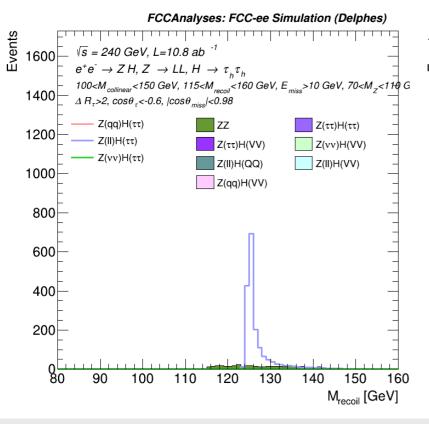
- Basic selection requires exactly the objects in each category to be reconstructed
- Quark jets are differentiated from hadronic tau jets depending on the reconstruction method
- Leptonic taus are always handled "manually" by picking the isolated leptons

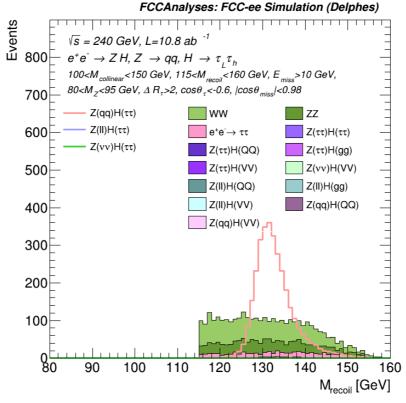
EXPLICIT TAU RECONSTRUCTION

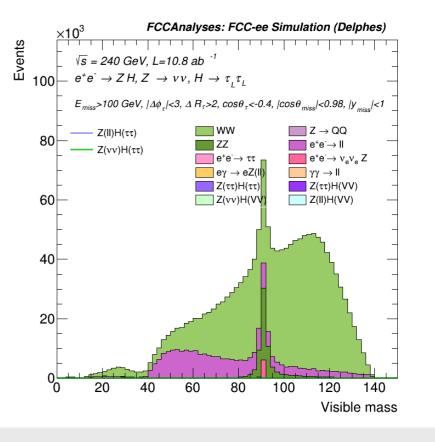
Tau reconstruction

- Explicit reconstruction from jets:
 - Looks at jets with no electrons or muons
 - Gets the leading constituent (π + or π -)
 - Adds constituents to the reconstructed tau 4-momentum vector (selection on pt>1 GeV or $\Delta\theta$ <0.2 from the leading)
 - Keeps track of the number of photons to define a tau ID (negative for non-tau-like jets)
- Efficiency is for one **reco tau matched to a gen tau** within $\Delta R < 0.2$

Efficiency

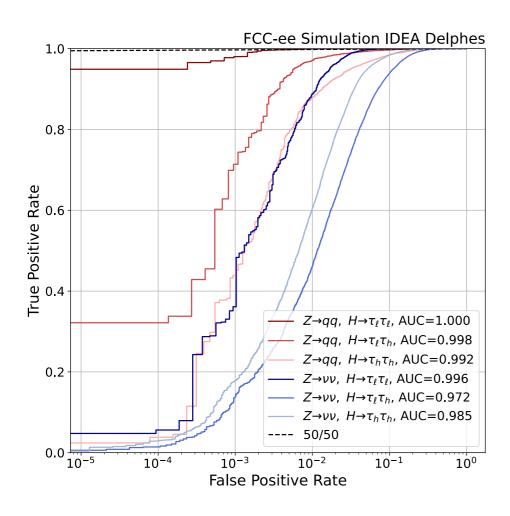

	Explicit reconstruction
$wzp6_ee_nunuH_Htautau_ecm240$	90.79%
$wzp6_ee_eeH_Htautau_ecm240$	85.64%
$wzp6_ee_mumuH_Htautau_ecm240$	85.64%
$wzp6_ee_bbH_Htautau_ecm240$	78.45%
$wzp6_ee_ccH_Htautau_ecm240$	79.01%
$wzp6_ee_ssH_Htautau_ecm240$	79.56%
$wzp6_ee_qqH_Htautau_ecm240$	79.31%

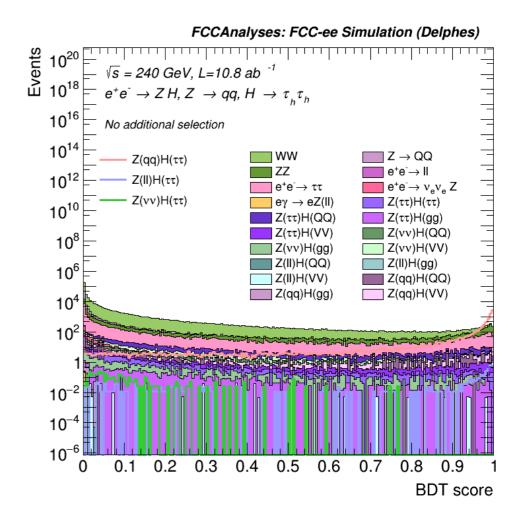

Selection



- lacksquare Updated cut on $\cos heta_{ au au}$
- M_{recoil} in $Z \rightarrow qq$ has incorrect behavior due to jet clustering

$Z \to \ell \ell$ Selection	Z o qq Selection	Z o u u Selection
$100 < M_{collinear} < 150 \text{ GeV}$		$E^{miss} > 100 \text{ GeV}$
$115 < M_{recoil} < 160 \text{ GeV}$		/ > 100 GeV
$E^{miss} >$	10 GeV	$ y^{miss} < 1$
$70 < M_Z < 100 \text{ GeV}$	$80 < M_Z < 95 \text{ GeV}$	$ \Delta\phi_{ au au} < 3$
$\cos heta_{ au au}$	< -0.6	$\cos\theta_{\tau\tau} < -0.4$
$\Delta R_{ au au} > 2$		
$ \cos\theta^{miss} < 0.98$		





BDT training

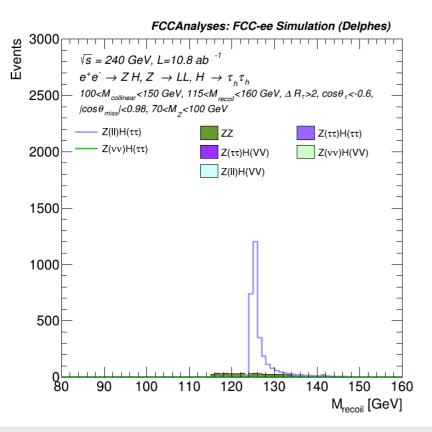
- We trained a different BDT in each category for Z o qq and Z o
 u
 u
- Events used in the training are also used when applying the BDT later on in the analysis
- No significant overtraining was observed for BDT of 200 trees and depth of 2 (shown in plots) and for 1000 trees and depth of 4

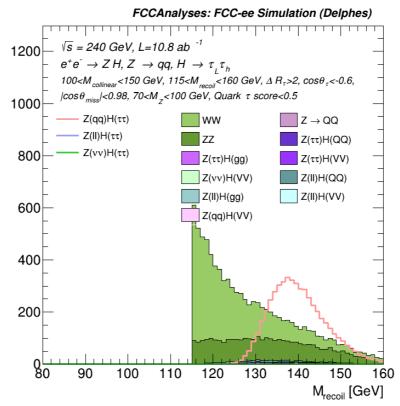
PNet RECONSTRUCTION

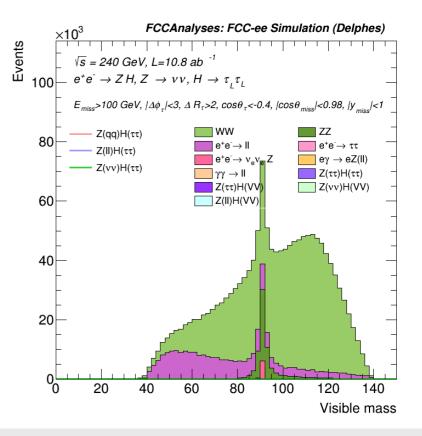
Tau reconstruction

- Found a second peak in the tau score at 0.9 coming from single photon jets
 - Taus are identified with PNet score above 0.5, unitary charge of the jet's constituents, mass smaller than 3 GeV
 - Quark jets are the rest with score below 0.5
- Efficiency is for one **reco tau matched to a gen tau** within $\Delta R < 0.2$

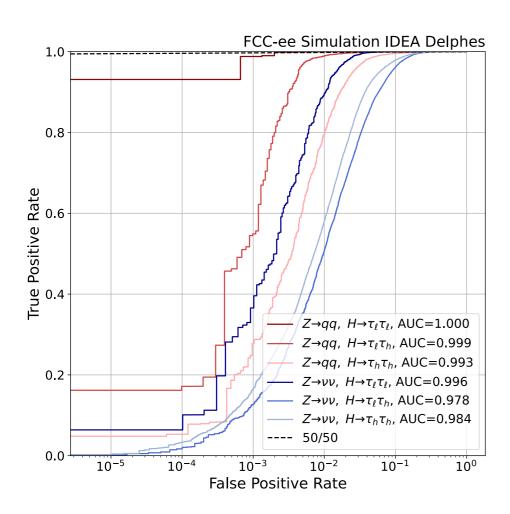
Efficiency

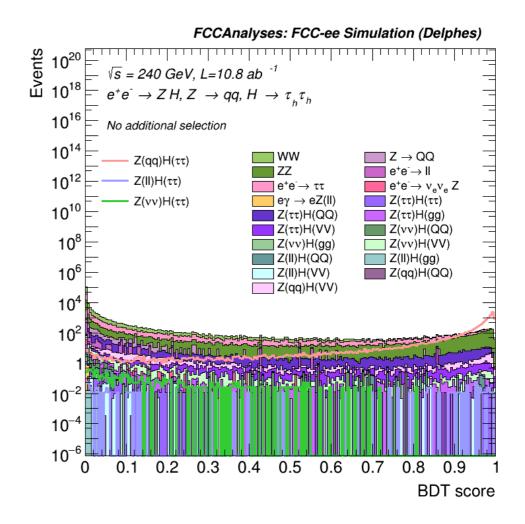

	PNet tagger (score>0.5)	Explicit reconstruction
wzp6_ee_nunuH_Htautau_ecm240	97.42%	90.79%
$wzp6_ee_eeH_Htautau_ecm240$	91.71%	85.64%
$wzp6_ee_mumuH_Htautau_ecm240$	91.71%	85.64%
$wzp6_ee_bbH_Htautau_ecm240$	64.09%	78.45%
$wzp6_ee_ccH_Htautau_ecm240$	65.19%	79.01%
$wzp6_ee_ssH_Htautau_ecm240$	65.75%	79.56%
$wzp6_ee_qqH_Htautau_ecm240$	65.71%	79.31%


Selection


- More events in $Z \to \ell\ell$ due to higher efficiency
- Some changes in backgrounds composition and shape

$Z \to \ell \ell$ Selection	$Z \to qq$ Selection	$Z \to \nu \nu$ Selection
$100 < M_{collinear} < 150 \text{ GeV}$		$E^{miss} > 100 \text{ GeV}$
$115 < M_{recoil} < 160 \text{ GeV}$		$ y^{miss} < 1$
$70 < M_Z < 100 \text{ GeV}$		$ \Delta\phi_{ au au} < 3$
$\cos\theta_{\tau\tau} < -0.6$		$\cos\theta_{\tau\tau} < -0.4$
$\Delta R_{ au au} > 2$		
$ \cos \theta^{miss} < 0.98$		
$E^{miss} > 10 \text{ GeV}$		


 $H o au_\ell au_\ell$



BDT training

- We trained a different BDT in each category for Z o qq and Z o
 u
 u
- Events used in the training are also used when applying the BDT later on in the analysis
- No significant overtraining was observed for BDT of 200 trees and depth of 2 (shown in plots) and for 1000 trees and depth of 4

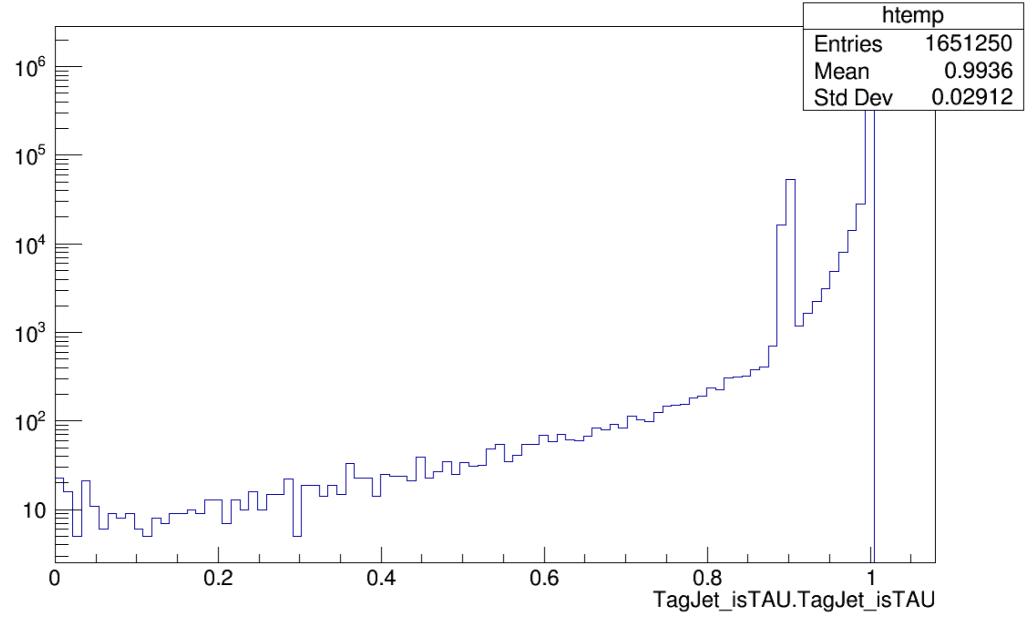
Results

- Combine shape-based fit <u>arXiv:2404.06614</u> with freely floating processes
 - Explicit reco: M_{recoil} for $Z \to \ell \ell$ and $Z \to qq$, M_{vis} for $Z \to \nu \nu$
 - lacksquare PNet reco: M_{recoil} for $Z o \ell\ell$, BDT score above 0.5 for Z o qq and Z o
 u
 u
- Relative uncertainty (68% CL) at \sqrt{s} =240 GeV, \mathcal{L} =10.8 ab⁻¹

	Explicit tau reconstruction	PNet tau reconstruction
Cut-based analysis	±1.17 %	±0.94 %
BDT analysis 200 trees	±1.06 %	±0.85 %
BDT analysis 1000 trees	±1.11 %	± %

Next steps

- Clean up the inclusive jets from the single photon jets that mess up the tagger score
- Try exclusive jet clustering, especially in the $Z \to qq$ channel, to possibly recover the correct Z reconstruction and get higher tau efficiency
- Everything (done at that point) will be documented in an update of the analysis note by Nov. 18
- Plans to continue working on the analysis after that
- CP study will come later on



BACKUP

Issue with jet tagging

shown 1M events of $e^+e^- \rightarrow ZH, Z \rightarrow \nu\nu, H \rightarrow \tau\tau$

same behavior in backgrounds