Town hall meeting on the Israeli Input to the European Strategy for Particle Physics

Ben Ohayon Technion IIT 19.12.2024

- Small(ish)
- AMO methods
- Not covered in other talks

- New physics searches (Theory-Experiment, Oscillations, ...)
- Determination of fundamental / useful constants

<u>In Israel</u>

Nuclear Beta decay

Nuclear Beta decay

Clocks & interferometers

Nuclear Beta decay

Clocks & interferometers

Exotic Atoms

Nuclear Beta decay

Clocks & interferometers

Exotic Atoms

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. JACKSON,* S. B. TREIMAN, AND H. W. WYLD, JR. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. JACKSON,* S. B. TREIMAN, AND H. W. WYLD, JR. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

Differential beta decay rate:

$$\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}} \propto \xi \left\{ 1 + \frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} + b\frac{m}{E_e} + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A\frac{\vec{p_e}}{E_e} + B\frac{\vec{p_{\nu}}}{E_{\nu}} + D\frac{\vec{p_e} \times \vec{p_{\nu}}}{E_e E_{\nu}} \right] \right\}$$

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. JACKSON,* S. B. TREIMAN, AND H. W. WYLD, JR. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

Differential beta decay rate:

$$\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}} \propto \xi \left\{ 1 + \frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} + b\frac{m}{E_e} + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A\frac{\vec{p_e}}{E_e} + B\frac{\vec{p_{\nu}}}{E_{\nu}} + D\frac{\vec{p_e} \times \vec{p_{\nu}}}{E_e E_{\nu}} \right] \right\}$$

T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956)

R

 σ_{e}

 p_e

H

Ν

D

 \boldsymbol{p}_{v}

B

Possible Tests of Time Reversal Invariance in Beta Decay

J. D. JACKSON,* S. B. TREIMAN, AND H. W. WYLD, JR. Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received January 28, 1957)

Differential beta decay rate:

$$\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}} \propto \xi \left\{ 1 + a \frac{\vec{p}_{e} \cdot \vec{p}_{\nu}}{E_{e}E_{\nu}} + b \frac{m}{E_{e}} + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A \frac{\vec{p}_{e}}{E_{e}} + B \frac{\vec{p}_{\nu}}{E_{\nu}} + D \frac{\vec{p}_{e} \times \vec{p}_{\nu}}{E_{e}E_{\nu}} \right] \right\}$$

+ various corrections (calculated by Doron Gazit @ HUJI)
Example: $a\xi \approx M_{F}^{2} \left(C_{V}^{2} + C_{V}^{\prime 2} - C_{S}^{2} - C_{S}^{\prime 2} \right) - M_{GT}^{2} \left(C_{A}^{2} + C_{A}^{\prime 2} - C_{T}^{2} - C_{T}^{\prime 2} \right) / 3 \int decay$
 $M_{GT}^{2} \left(C_{A}^{2} + C_{A}^{\prime 2} - C_{T}^{2} - C_{T}^{\prime 2} \right) / 3 \int dpecay$

SM BSM

T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956)

Comprehensive analysis of beta decays within and beyond the Standard Model

Adam Falkowski, Martín González-Alonso, and Oscar Naviliat-Cunci

Comprehensive analysis of beta decays within and beyond the Standard Model

Adam Falkowski, Martín González-Alonso, and Oscar Naviliat-Cunci

Trapped radioisotopes

Trapped radioisotopes

¹⁸⁻²³Ne atomic trap @ SARAF

- + Electrostatic Ion Beam Trap (initially 6He).
- + High precision/Stopping power Si(Li) Spectrometer.

SARAF/HUJI:

Guy Ron, Sergey Vaintraub Yonatan Mishnayot, Sharon Beck Tsviki Hirsch

Trapped radioisotopes

¹⁸⁻²³Ne atomic trap @ SARAF

- + Electrostatic Ion Beam Trap (initially 6He).
- + High precision/Stopping power Si(Li) Spectrometer.

SARAF/HUJI:

Guy Ron, Sergey Vaintraub Yonatan Mishnayot, Sharon Beck Tsviki Hirsch

HUJI: Guy Ron

USA: Jeff Martoff, Eric Hudson, Paul Hamilton ...

Trapped radioisotopes

¹⁸⁻²³Ne atomic trap @ SARAF

- + Electrostatic Ion Beam Trap (initially 6He).
- + High precision/Stopping power Si(Li) Spectrometer.

SARAF/HUJI:

Guy Ron, Sergey Vaintraub Yonatan Mishnayot, Sharon Beck Tsviki Hirsch ¹³¹Cs @ UCLA X-ray detectors (4×, not shown)

HUJI: Guy Ron

USA: Jeff Martoff, Eric Hudson, Paul Hamilton ... ⁸Li/⁸B ion trap @ LLNL

Plastic Scintillator

SARAF: Tsviki Hirsch

USA: AT Gallant, ND Scielzo, G Savard, ...

In Israel

Nuclear Beta decay

Clocks & interferometers

Exotic Atoms

National Quantum-Metrology Network

- Establish time-and-frequency centers in Israel that will be connected to a national network.
- Provide accurate, precise, and stable time and frequency signals to local users, and throughout the network.
- A paradigm shift in metrological capabilities in Israel.

National Quantum-Metrology Network

- Establish time-and-frequency centers in Israel that will be connected to a national network.
- Provide accurate, precise, and stable time and frequency signals to local users, and throughout the network.
- A paradigm shift in metrological capabilities in Israel.

2

WI: Meir-Perez collaboration

Dark-matter searches with I₂⁺

Ferreira, Astron Astrophys Rev 29, 1-186 (2021)

Coupling to the **strong sector** – gives rise to oscillations of **vibration energy levels in molecules**.

Shagam lab – Technion, Pheno- Soreq group **Precision spectroscopy of chiral molecules**

• Weak force induced Parity violation:

Vibrational spectroscopy of chiral molecular ions – CHDBrI $^{\scriptscriptstyle +}$

~1Hz shift expected between L and R enantiomers

• Search for inter-nucleus BSM force:

Rotational Spectroscopy of radical chiral molecules with nuclear spins $\vec{\sigma_i}$

 $\Delta E_{BSM} \propto \left\langle \left(\overrightarrow{\sigma_i} \times \overrightarrow{\sigma_j} \right) \cdot \hat{r}_{ij} \right\rangle$ Parity switch suppresses SM effects

Searching for exotic physics that couples with atomic spin

In Israel:

Tool: comagnetometer (Rb-K-³He)

Attenuates low-frequency magnetic noise **GNOME collaboration** (led by D. Budker):

Searching for exotic physics that couples with atomic spin

In Israel:

Folman group +

Tool: comagnetometer (Rb-K-³He)

Attenuates low-frequency magnetic noise **GNOME collaboration** (led by D. Budker):

BGU tabletop experiment and error signal from GNOME science run #5

Future: corollate the comagnetometer with the Yb optical clock to search for exotic physics

Current date: 2024/12/17 13:21:46 GPS

Show Map Legend

Beersheba

Institution: Ben Gurion University Sensor type: Atomic Magnetometer Sensor: He-3/Rb/K SERF Comagnetometer Contacts: Yossi Rosenzweig Coordinates: 31.2611 N, 34.8043 E

(in

Ben-Gurion University of the Negev

Nano-diamond spatial interferometry:

Probing the Quantum-Gravity interface

Expected signal: T³ phase accumulation in spin population measurement

A preliminary experiment was performed with Rb atoms

Nuclear Beta decay

Clocks & interferometers

Exotic Atoms

Israeli membership: Eli Sarid, Ben Gurion University

ALPHA Collaboration, CERN: spectroscopy and gravity measurements in Trapped Antihydrogen Atoms

Motivation: CPT tests

Israeli membership: Eli Sarid, Ben Gurion University

ALPHA Collaboration, CERN: spectroscopy and gravity measurements in Trapped Antihydrogen Atoms

Motivation: CPT tests

Characterization of the 1S-2S transition in antihydrogen

nature

Explore content V About the journal V Publish with us V

nature > articles > article

Article | Open access | Published: 27 September 2023

Observation of the effect of gravity on the motion of antimatter

Muonium Spectroscopy

The simplest atom

"Jungmann's Triangle"

Muonium 1S - 2S(muon mass m_{μ})

Muonium Hyperfine (magnetic moment μ_{μ})

Muonium Spectroscopy

The simplest atom

"Jungmann's Triangle"

Small size:
$$a = \frac{a_0}{Z^2} \frac{m_e}{m}$$

Short-range new physics (heavy mediators)
High energy: $E_n = -R_{\infty}Z^2 \frac{m}{m_e}$
 f
X-ray spectroscopy

Contact-free muonic atoms:

Enabling quantum-sensing technology: Cryogenic Microcalorimeters

QUARTET collaboration

arXiv:2310.03846

Nuclear Beta decay

HUJI: Ron, Gazit NRC: Vaintraub, Hirsch, Mishnayot, Beck

Clocks & interferometers

Technion: Shagam, Soreq WI: Meir, Perez BGU: Folman, Sarid + Clock Network

+ Thorium clock ?

Technion: Ohayon, Soreq BGU: Sarid HUJI: Barnea

In Israel

Exotic Atoms

DRD5: A global initiative on R&D on quantum sensors and emerging technologies for particle physics

Efforts

Potential HEP impact

Applied (detectors)

Fundamental physics

Improved quantum measurements

HEP function					
	Tracking	Calorimetry	Timing	PID	Helicity
Work package	`				
WP 1 (Quantum systems in traps and beam)	Rydberg TPC	BEC WIMP scattering (recoil)	O(fs) reference clock for time-sensitive synchronization (photon TOF)	Rydberg dE/dx amplifiers	
WP2 (Quantum materials: 0-, 1- and 2-D)	"DotPix"; improved GEM's; chromatic tracking (sub-pixel); active scintillators	Chromatic calorimetry	Suspended / embedded quantum dot scintillators	Photonic dE/dx through suspended quantum dots in TPC	
WP 3 (Superconducting quantum devices)	O(ps) SNSPD trackers for diffractive scattering (Roman pot)	FIR, UV & x-ray calorimetry	O(ps) high Tc SNSPD	Milli- & microcharged particle trackers in beam dumps	
WP 4 (scaled-up bulk systems for mip's)	Multi-mode trackers (electrons, photons)	Multi-mode calorimeters (electrons, photons, phonons)	Wavefront detection (e.g. O(ps) embedded devices)		Helicity detector via ultra-thin NV optically polarized scattering / tracking stack
WP 5 (Quantum techniques)				Many-to-one entanglement detection of interaction	
WP 6 (capacity building)	Technical exp thus enhance base for infra	ertise of future workfo d attractiveness; cross structure (beam tests, d	rce (detector constructi -departmental networki dilution refrigerators, pr	on); broadened career ng and collaboration; b ocessing technologies)	prospects and roadened user

(under way; in preparation; under discussion or imaginable applications; long-range potential)

Nuclear decay

Why study nuclear beta decay?

$$\begin{split} a_{\beta,\nu}^{LO\xi LO} &= |M_F|^2 \left(|C_V^{(l)}|^2 + |C_V^{\prime(l)}|^2 - |C_S^{(l)}|^2 - |C_S^{\prime(l)}|^2 \right) \\ &- |M_{GT}|^2 \left(|C_A^{(l)}|^2 + |C_A^{\prime(l)}|^2 - |C_T^{\prime(l)}|^2 - |C_T^{\prime(l)}|^2 \right) \\ &\pm 2 \frac{\alpha Z m_e}{p_e} \operatorname{Im} \left(C_S^{(l)} C_V^{(l)*} + C_S^{\prime(l)} C_V^{\prime(l)*} \right) \\ b^{LO\xi LO} &= \pm 2 \gamma \operatorname{Re} \Big[|M_F|^2 \left(C_S^{(l)} C_V^{(l)*} + C_S^{\prime(l)} C_V^{\prime(l)*} \right) \\ &+ |M_{GT}|^2 \left(C_T^{(l)} C_A^{(l)*} + C_T^{\prime(l)} C_A^{\prime(l)*} \right) \Big] \\ B^{LO\xi LO} &= 2 \operatorname{Re} \Big\{ - |M_{GT}|^2 \left[\left(C_T^{(l)} C_T^{\prime(l)*} + C_A^{(l)} C_A^{\prime(l)*} \right) + \left(C_T^{(l)} C_A^{\prime(l)*} + C_T^{\prime(l)} C_A^{(l)*} \right) \Big] \Big\} \end{split}$$

J.D. Jackson, S.B. Treiman, & H.W. Wyld, Phys. Rev. 106, 517 (1957)

Correlation Coefficients:

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Differential Beta-} & d^{3}\Gamma \\ \text{Decay rate:} & \frac{d^{3}\Gamma}{dE_{e}d\Omega_{v}d\Omega_{v}} \propto \xi \left\{ 1 + a_{\beta v} \frac{p_{e} \cdot p_{v}}{E_{e}E_{v}} + b_{Fierz} \frac{m_{e}}{E_{e}} + \frac{\langle I \rangle}{I} \cdot \left[A_{\beta} \frac{p_{e}}{E_{e}} + B_{v} \frac{p_{v}}{E_{v}} + D \frac{p_{e} \times p_{v}}{E_{e}E_{v}} \right] \right\} \\ \begin{array}{l} \textbf{a}_{\beta v} \xi \sim |\mathsf{M}_{\mathsf{F}}|^{2} (\mathsf{C}_{V}^{2} + \mathsf{C}_{V}^{\prime 2} - \mathsf{C}_{\mathsf{S}}^{2} - \mathsf{C}_{\mathsf{S}}^{\prime 2}) - |\mathsf{M}_{\mathsf{GT}}|^{2} (\mathsf{C}_{A}^{2} + \mathsf{C}_{A}^{\prime 2} - \mathsf{C}_{T}^{2} - \mathsf{C}_{T}^{\prime 2})/3 \\ \\ \textbf{b}_{\mathsf{f}} \sim |\mathsf{M}_{\mathsf{F}}|^{2} \frac{\mathsf{C}_{\mathsf{S}} + \mathsf{C}_{\mathsf{S}}^{\prime}}{2\mathsf{C}_{\mathsf{V}}} + |\mathsf{M}_{\mathsf{GT}}|^{2} \frac{\mathsf{C}_{\mathsf{T}} + \mathsf{C}_{\mathsf{T}}^{\prime}}{2\mathsf{C}_{\mathsf{A}}} = 0 \text{ SM, right-handed BSM} \\ \\ \left(\frac{M_{W}}{M_{New}} \right)^{2} \sim \text{Precision in coefficients, sub 1% probes TeV physics!} \\ \\ \text{Total decay} \\ rate: \\ ft \propto \frac{1}{1 + b_{f} < \frac{m}{\mathsf{E}}} \\ \\ 0^{+} \rightarrow 0^{+} \\ Neutron, \\ Mirror \end{array} \right| \begin{array}{l} Beta \\ Spectrum: \\ Allowed \\ \Gamma(E_{e}) \propto 1 + b_{f} \frac{m}{\mathsf{E}_{e}} \\ \\ \Pi(E_{e}) \propto 1 + b_{f} \frac{m}{\mathsf{E}_{e}} \\ \\ Best to fit: \\ \hat{a} = a_{\beta v} + \alpha b_{f} \\ a_{6He} \sim 0.1 \\ \\ See: \text{Gonzalez-Alonso and O. Naviliat-Cuncic 2016} \end{array} \right) \end{array}$$

β decay 101

Differential decay rate

 $d\Gamma$

$$\frac{d\Gamma}{dE_{\beta}d\Omega_{\beta}d\Omega_{\nu}} \qquad \propto \xi \left\{ 1 + \frac{a}{E_{e}E_{\nu}} + b\frac{m}{E_{e}} + \frac{\langle \vec{J} \rangle}{J} \cdot \left[A\frac{\vec{p}_{e}}{E_{e}} + B\frac{\vec{p}_{\nu}}{E_{\nu}} + D\frac{\vec{p}_{e} \times \vec{p}_{\nu}}{E_{e}E_{\nu}} \right] \right\}$$

Parameter	Observable Sensitivity		SM Prediction
а	β-v (recoil) correlation	Tensor & Scalar terms	1 for pure Fermi -1/3 for pure GT or combination
b (Fierz term)	Comparison of β^+ to EC rate	SV/T/A interference	0
A	β asymmetry for polarized nuclei	Tensor, ST/VA Parity	Nucleus dependent
В	v asymmetry (recoil) for polarized nuclei	Tensor, TA/ST/VA/SA/VT Parity	Nucleus dependent
D	Triple product	ST/VA Interference TRI	0

Fundamental & Useful constants

<u>Physical Parameters in the SM (w. o. m_{ν}) + G_N :</u>

- Higgs Sector: Mass and Vacuum expectation value
- Yukawa Sector: 9 fermion masses (e.g. $m_{\rm e}$), 3 CKM mixing angles and 1 phase
- Guage sector: 3 gauge couplings (e.g. fine structure α)

Hydrogen-like energy levels:

"In principle" calculable:

- Masses of composites (proton, neutron, pion, helion, ...)
- Magnetic moments of composites
- Nuclear low energy constants (e.g. nuclear EM moments)
- ...ad infinitum

$$E_n = -\frac{R_{\infty}}{n^2} \frac{1}{1 + m/M} \left(1 + a_{FS} \alpha^2 + a_{LS} \alpha^3 + a_{HFS} \alpha^2 g_N \frac{m}{M} (1 + a_z \alpha m r_z + \dots) + a_{FNS} \alpha^2 m^2 r_c^2 + a_F \alpha^3 m^3 r_F^3 + \dots \right)$$

Role of bound state QED theory: calculate dimensionless numbers $a_i(n, l, j)$ Best Experiment + Theory determines \mathbf{R}_{∞} (ppt level)